浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
E-mail: ywli@scu.edu.cn
纸质出版日期:2024-02-20,
网络出版日期:2023-10-24,
收稿日期:2023-07-13,
录用日期:2023-08-19
移动端阅览
杨磊, 张小康, 张键华, 胡俊飞, 张婷, 顾志鹏, 李乙文. 人造黑色素染发材料. 高分子学报, 2024, 55(2), 192-201
Yang, L.; Zhang, X. K.; Zhang, J. H.; Hu, J. F.; Zhang, T.; Gu, Z. P.; Li, Y. W. Synthetic melanin hair dye. Acta Polymerica Sinica, 2024, 55(2), 192-201
杨磊, 张小康, 张键华, 胡俊飞, 张婷, 顾志鹏, 李乙文. 人造黑色素染发材料. 高分子学报, 2024, 55(2), 192-201 DOI: 10.11777/j.issn1000-3304.2023.23184.
Yang, L.; Zhang, X. K.; Zhang, J. H.; Hu, J. F.; Zhang, T.; Gu, Z. P.; Li, Y. W. Synthetic melanin hair dye. Acta Polymerica Sinica, 2024, 55(2), 192-201 DOI: 10.11777/j.issn1000-3304.2023.23184.
传统仿生人造黑色素聚多巴胺(PDA)染发过程中涉及的过强碱性会使毛发粗糙影响发质,大量的金属离子则存在安全性问题. 本工作利用黑色素单体5
6-二羟基吲哚(DHI)能够在温和条件下仅通过空气氧化发生快速聚合的特点,报道了一种通过温和条件在头发表面和内部原位聚合的人造黑色素染发材料. 染发色度值
L
=21,与自然黑发基本一致,洗涤30次后
L
=25,耐洗涤性良好,染色后头发拉伸强度189 MPa,断裂伸长率51%,相比染色前发质有所改善. 研究结果表明,此类染发剂染发条件温和(空气氧化),色度自然,固色持久,有助于改善发质,生物安全性良好,为开发新一代染发剂提供了创新的设计策略和可靠的工具平台.
Hair dyeing has become an indispensable demand and fashion choice in people's daily lives. The issues of allergy
carcinogenicity
and gene mutation caused by the commonly used chemical hair dye
which mostly comprises p-phenylenediamine and other substances
are becoming noticeable. As a result
there is an urgent need for innovative materials to replace aniline in commercial hair dye. A biomimetic fabrication of polydopamine (PDA) inspired by natural melanin has been reported to have excellent hair dyeing effects. A strong alkaline oxidative environment or metal ion catalysis are usually indispensable for dopamine polymerization. However
excessive alkalinity will make the hair rough and affect its quality
and metal ions may be poisonous. As a result
developing a new type of mild
efficient
safe
and non-toxic synthetic melanin hair dye is an urgent concern. The more reactive melanin monomer 5
6-dihydroxyindole (DHI) may just conduct rapid polymerization by air oxidation
in contrast to DA
which requires demanding oxidation conditions to initiate polymerization. Herein
this work reported a hair dye material that polymerized DHI
in situ
on the surface and inside of hair under mild conditions. The
L
value of dyed hair is 30
and
L
=20 after washing 30 times. The results of the synthetic melanin hair dye to adhere uniformly to the hair surface have been demonstrated by electron microscopy
and some monomers and oligomers will also reach the cortical layer of the hair to polymerize. The poly-DHI (PDHI) structure can engage in a Michael addition reaction with the disulfide bond in the hair to form a covalent coupling due to its high reducibility and highly reactive double bond. The findings of skin sensitization tests demonstrate that using DHI polymerization to dye hair won't affect human skin or health
even at the greatest concentration permitted. Finally
it can be obtained an efficient
durable
and safe melanin hair dye
which provides an innovative design strategy and a dependable tool platform for the development of a new generation of hair dyes.
人造黑色素聚二羟基吲哚染发剂仿生材料
Synthetic melaninPolydioxindoleHair dyeBio-inspired material
Battistella C.; McCallum N. C.; Gnanasekaran K.; Zhou X. H.; Caponetti V.; Montalti M.; Gianneschi N. C. Mimicking natural human hair pigmentation with synthetic melanin. ACS Cent. Sci., 2020, 6(7), 1179-1188. doi:10.1021/acscentsci.0c00068http://dx.doi.org/10.1021/acscentsci.0c00068
Morel O. J. X.; Christie R. M. Current trends in the chemistry of permanent hair dyeing. Chem. Rev., 2011, 111(4), 2537-2561. doi:10.1021/cr1000145http://dx.doi.org/10.1021/cr1000145
Eberle C. E.; Sandler D. P.; Taylor K. W.; White A. J. Hair dye and chemical straightener use and breast cancer risk in a large US population of black and white women. Int. J. Cancer, 2020, 147(2), 383-391. doi:10.1002/ijc.32738http://dx.doi.org/10.1002/ijc.32738
Ferguson F. J.; Pongpairoj K.; Basketter D. A.; White I. R.; McFadden J. P. Addressing the conundrums of p-phenylenediamine hair dye allergy by applying Friedmann's principles of contact sensitization. Contact Dermat., 2019, 80(4), 234-237. doi:10.1111/cod.13171http://dx.doi.org/10.1111/cod.13171
Cui H. Y.; Xie W. J.; Hua Z. J.; Cao L. H.; Xiong Z. Y.; Tang Y.; Yuan Z. Q. Recent advancements in natural plant colorants used for hair dye applications: a review. Molecules, 2022, 27(22), 8062. doi:10.3390/molecules27228062http://dx.doi.org/10.3390/molecules27228062
Au K. M.; Lu Z. H.; Matcher S. J.; Armes S. P. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. Adv. Mater., 2011, 23(48), 5792-5795. doi:10.1002/adma.201103190http://dx.doi.org/10.1002/adma.201103190
Guo X. J.; Cao B.; Wang C. Y.; Lu S. Y.; Hu X. L. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. Nanoscale, 2020, 12(14), 7651-7659. doi:10.1039/d0nr00181chttp://dx.doi.org/10.1039/d0nr00181c
Jeon J. R.; Le T. T.; Chang Y. S. Dihydroxynaphthalene-based mimicry of fungal melanogenesis for multifunctional coatings. Microb. Biotechnol., 2016, 9(3), 305-315. doi:10.1111/1751-7915.12347http://dx.doi.org/10.1111/1751-7915.12347
刘云鸿, 彭新艳, 徐文涛, 王汉春. 基于聚琥珀酰亚胺衍生物仿生超亲水表面的制备及性能. 高分子学报, 2022, 53(3), 279-288. doi:10.11777/j.issn1000-3304.2021.21273http://dx.doi.org/10.11777/j.issn1000-3304.2021.21273
Zou Y.; Chen X. F.; Yang P.; Liang G. J.; Yang Y.; Gu Z. P.; Li Y. W. Regulating the absorption spectrum of polydopamine. Sci. Adv., 2020, 6(36), eabb4696. doi:10.1126/sciadv.abb4696http://dx.doi.org/10.1126/sciadv.abb4696
Yang P.; Gu Z. P.; Zhu F.; Li Y. W. Structural and functional tailoring of melanin-like polydopamine radical scavengers. CCS Chem., 2020, 2(2), 128-138. doi:10.31635/ccschem.020.201900077http://dx.doi.org/10.31635/ccschem.020.201900077
Yang P.; Zhu F.; Zhang Z. B.; Cheng Y. Y.; Wang Z.; Li Y. W. Stimuli-responsive polydopamine-based smart materials. Chem. Soc. Rev., 2021, 50(14), 8319-8343. doi:10.1039/d1cs00374ghttp://dx.doi.org/10.1039/d1cs00374g
Yang Y. Y.; Yang L.; Yang F. Y.; Bai W. J.; Zhang X. Q.; Li H. T.; Duan G. G.; Xu Y. T.; Li Y. W. A bioinspired antibacterial and photothermal membrane for stable and durable clean water remediation. Mater. Horiz., 2023, 10(1), 268-276. doi:10.1039/d2mh01151dhttp://dx.doi.org/10.1039/d2mh01151d
Im K. M.; Kim T. W.; Jeon J. R. Metal-chelation-assisted deposition of polydopamine on human hair: a ready-to-use eumelanin-based hair dyeing methodology. ACS Biomater. Sci. Eng., 2017, 3(4), 628-636. doi:10.1021/acsbiomaterials.7b00031http://dx.doi.org/10.1021/acsbiomaterials.7b00031
Gao Z. F.; Wang X. Y.; Gao J. B.; Xia F. Rapid preparation of polydopamine coating as a multifunctional hair dye. RSC Adv., 2019, 9(35), 20492-20496. doi:10.1039/c9ra03177dhttp://dx.doi.org/10.1039/c9ra03177d
Battistella C.; McCallum N. C.; Vanthournout B.; Forman C. J.; Ni Q. Z.; La Clair J. J.; Burkart M. D.; Shawkey M. D.; Gianneschi N. C. Bioinspired chemoenzymatic route to artificial melanin for hair pigmentation. Chem. Mater., 2020, 32(21), 9201-9210. doi:10.1021/acs.chemmater.0c02790http://dx.doi.org/10.1021/acs.chemmater.0c02790
Zheng C.; Huang J.; Li T.; Wang Y.; Jiang J.; Zhang X. H.; Huang L.; Xia B. H.; Dong W. F. Permanent low-toxicity hair dye based on pregrafting melanin with cystine. ACS Biomater. Sci. Eng., 2022, 8(7), 2858-2863. doi:10.1021/acsbiomaterials.2c00415http://dx.doi.org/10.1021/acsbiomaterials.2c00415
Sun Y.; Wang C. Y.; Sun M.; Fan Z. Bioinspired polymeric pigments to mimic natural hair coloring. RSC Adv., 2021, 11(3), 1694-1699. doi:10.1039/d0ra09539ghttp://dx.doi.org/10.1039/d0ra09539g
Xia L.; Yuan L.; Zhou K.; Zeng J.; Zhang K. L.; Zheng G. C.; Fu Q. A.; Xia Z. N.; Fu Q. F. Mixed-solvent-mediated strategy for enhancing light absorption of polydopamine and adhesion persistence of dopamine solutions. ACS Appl. Mater. Interfaces, 2023, 15(18), 22493-22505. doi:10.1021/acsami.3c00769http://dx.doi.org/10.1021/acsami.3c00769
Yang P.; Wang T. Y.; Zhang J. H.; Zhang H. J.; Bai W. J.; Duan G. G.; Zhang W.; Wu J. R.; Gu Z. P.; Li Y. W. Manipulating the antioxidative capacity of melanin-like nanoparticles by involving condensation polymerization. Sci. China Chem., 2023, 66(5), 1520-1528. doi:10.1007/s11426-023-1542-8http://dx.doi.org/10.1007/s11426-023-1542-8
Zhang H. J.; Huang C. H.; Zhang J. H.; Wang C.; Wang T. Y.; Shi S.; Gu Z. P.; Li Y. W. Synthetic fungal melanin nanoparticles with excellent antioxidative property. Giant, 2022, 12, 100120. doi:10.1016/j.giant.2022.100120http://dx.doi.org/10.1016/j.giant.2022.100120
Yang Z.; Zhang J. H.; Liu H. J.; Hu J. F.; Wang X. H.; Bai W. J.; Zhang W.; Yang Y.; Gu Z. P.; Li Y. W. A bioinspired strategy toward UV absorption enhancement of melanin-like polymers for Sun protection. CCS Chem., 2023, Doi: 10.31635/ccschem.022.202202565.http://dx.doi.org/10.31635/ccschem.022.202202565.
Huang C. H.; Wang X. H.; Yang P.; Shi S.; Duan G. G.; Liu X. H.; Li Y. W. Size regulation of polydopamine nanoparticles by boronic acid and Lewis base. Macromol. Rapid Commun., 2023, 44(1), 2100916. doi:10.1002/marc.202100916http://dx.doi.org/10.1002/marc.202100916
Yang L.; Guo X. T.; Jin Z. K.; Guo W. C.; Duan G. G.; Liu X. H.; Li Y. W. Emergence of melanin-inspired supercapacitors. Nano Today, 2021, 37, 101075. doi:10.1016/j.nantod.2020.101075http://dx.doi.org/10.1016/j.nantod.2020.101075
Jin Z. K.; Yang L.; Shi S.; Wang T. Y.; Duan G. G.; Liu X. H.; Li Y. W. Flexible polydopamine bioelectronics. Adv. Funct. Mater., 2021, 31(30), 2103391. doi:10.1002/adfm.202103391http://dx.doi.org/10.1002/adfm.202103391
Ma Z. Y.; Li D. Y.; Jia X.; Wang R. L.; Zhu M. F. Recent advances in bio-inspired versatile polydopamine platforms for "smart" cancer photothermal therapy. Chinese J. Polym. Sci., 2023, 41(5), 699-712. doi:10.1007/s10118-023-2926-2http://dx.doi.org/10.1007/s10118-023-2926-2
赵晗, 尚晴, 杨萌, 金帅, 王洋洋, 赵宁, 尹晓品, 丁彩玲, 徐坚. 邻苯二酚-四乙烯五胺改性超高分子量聚乙烯纤维. 高分子学报, 2020, 51(3), 287-294. doi:10.11777/j.issn1000-3304.2019.19172http://dx.doi.org/10.11777/j.issn1000-3304.2019.19172
Geng H. M.; Zhuang L. P.; Li M. Q.; Liu H. R.; Caruso F.; Hao J. C.; Cui J. W. Interfacial assembly of metal–phenolic networks for hair dyeing. ACS Appl. Mater. Interfaces, 2020, acsami.0c06928. doi:10.1021/acsami.0c06928http://dx.doi.org/10.1021/acsami.0c06928
Wang Z.; Xie Y. J.; Li Y. W.; Huang Y. R.; Parent L. R.; Ditri T.; Zang N. Z.; Rinehart J. D.; Gianneschi N. C. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry. Chem. Mater., 2017, 29(19), 8195-8201. doi:10.1021/acs.chemmater.7b02262http://dx.doi.org/10.1021/acs.chemmater.7b02262
Huang L.; Liu M. Y.; Huang H. Y.; Wen Y. Q.; Zhang X. Y.; Wei Y. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules, 2018, 19(6), 1858-1868. doi:10.1021/acs.biomac.8b00437http://dx.doi.org/10.1021/acs.biomac.8b00437
Lee H. A.; Park E.; Lee H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv. Mater., 2020, 32(35), 1907505. doi:10.1002/adma.201907505http://dx.doi.org/10.1002/adma.201907505
Bai W. J.; Yang P.; Zhang H. J.; Wang T. Y.; Yang Y. Y.; Zhang X. Q.; Duan G. G.; Xu Y. T.; Li Y. W. Polycondensation-involved melanin-like polymers for enhanced solar energy utilization. Macromolecules, 2023, 56(12), 4566-4574. doi:10.1021/acs.macromol.3c00852http://dx.doi.org/10.1021/acs.macromol.3c00852
Antidormi A.; Melis C.; Canadell E.; Colombo L. Understanding the polymerization process of eumelanin by computer simulations. J. Phys. Chem. C, 2018, 122(49), 28368-28374. doi:10.1021/acs.jpcc.8b09484http://dx.doi.org/10.1021/acs.jpcc.8b09484
Lasisi T.; Smallcombe J. W.; Kenney W. L.; Shriver M. D.; Zydney B.; Jablonski N. G.; Havenith G. Human scalp hair as a thermoregulatory adaptation. Proc. Natl. Acad. Sci. U. S. A., 2023, 120(24), 2301760120. doi:10.1073/pnas.2301760120http://dx.doi.org/10.1073/pnas.2301760120
Yang P.; Bai W. J.; Zou Y.; Zhang X. Q.; Yang Y. Y.; Duan G. G.; Wu J. R.; Xu Y. T.; Li Y. W. A melanin-inspired robust aerogel for multifunctional water remediation. Mater. Horiz., 2023, 10(3), 1020-1029. doi:10.1039/d2mh01474bhttp://dx.doi.org/10.1039/d2mh01474b
Bai W. J.; Yang P.; Liu H. J.; Zou Y.; Wang X. H.; Yang Y.; Gu Z. P.; Li Y. W. Boosting the optical absorption of melanin-like polymers. Macromolecules, 2022, 55(9), 3493-3501. doi:10.1021/acs.macromol.2c00506http://dx.doi.org/10.1021/acs.macromol.2c00506
Bai W. J.; Xiang P. J.; Liu H. J.; Guo H. Y.; Tang Z. R.; Yang P.; Zou Y.; Yang Y.; Gu Z. P.; Li Y. W. Molecular hyperpolarization-directed photothermally enhanced melanin-inspired polymers. Macromolecules, 2022, 55(15), 6426-6434. doi:10.1021/acs.macromol.2c01440http://dx.doi.org/10.1021/acs.macromol.2c01440
Zou Y.; Yang P.; Yang L.; Li N.; Duan G. G.; Liu X. H.; Li Y. W. Boosting solar steam generation by photothermal enhanced polydopamine/wood composites. Polymer, 2021, 217, 123464. doi:10.1016/j.polymer.2021.123464http://dx.doi.org/10.1016/j.polymer.2021.123464
Zou Y.; Zhao J. Y.; Zhu J. Y.; Guo X. Y.; Chen P.; Duan G. G.; Liu X. H.; Li Y. W. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces, 2021, 13(6), 7617-7624. doi:10.1021/acsami.0c22584http://dx.doi.org/10.1021/acsami.0c22584
0
浏览量
621
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构