浏览全部资源
扫码关注微信
高分子物理与化学国家重点实验室 中国科学院长春应用化学研究所 长春 130022
E-mail: xlxu@ciac.ac.cn
yefeng@ciac.ac.cn
纸质出版日期:2024-03-20,
网络出版日期:2024-01-15,
收稿日期:2023-10-23,
录用日期:2023-11-15
移动端阅览
黄绍永, 徐晓雷, 叶峰, 陈全. 仿生天然橡胶生胶的流变行为表征. 高分子学报, 2024, 55(3), 359-368
Huang, S. Y.; Xu, X. L.; Ye, F.; Chen, Q. Rheological behavior of biomimetic rubber. Acta Polymerica Sinica, 2024, 55(3), 359-368
黄绍永, 徐晓雷, 叶峰, 陈全. 仿生天然橡胶生胶的流变行为表征. 高分子学报, 2024, 55(3), 359-368 DOI: 10.11777/j.issn1000-3304.2023.23213.
Huang, S. Y.; Xu, X. L.; Ye, F.; Chen, Q. Rheological behavior of biomimetic rubber. Acta Polymerica Sinica, 2024, 55(3), 359-368 DOI: 10.11777/j.issn1000-3304.2023.23213.
明确橡胶的流变行为对于理解其链结构和加工行为,以及二者之间的关系至关重要. 本文中通过流变学测试手段对比研究了仿生天然橡胶和天然橡胶的生胶的线性黏弹行为和非线性流变行为. 相比于商品化合成异戊橡胶,文中的仿生天然橡胶和天然橡胶表现出更为相近的线性黏弹行为,主要表现为近乎相同的平台模量、末端弛豫时间、复数黏度,以及在加工窗口区域相同的剪切黏度对剪切速率的依赖性. 非线性松弛行为的结果表明,天然橡胶和仿生天然橡胶的松弛模量对于时间均表现为幂律关系,对时间和应变的依赖具有可分离性,二者的衰减函数对应变的依赖性由于链结构和微观精细结构的不同而存在一定差异.
仿生天然橡胶天然橡胶线性黏弹性衰减函数
Biomimetic rubberNatural rubberLinear viscoelasticityDamping function
Tanaka Y.; Tarachiwin L. Recent advances in structural characterization of natural rubber. Rubber Chem. Technol., 2009, 82(3), 283-314. doi:10.5254/1.3548250http://dx.doi.org/10.5254/1.3548250
Montes S.; White J. L. A comparative rheological investigation of natural and synthetic cis-1,4 polyisoprenes and their carbon black compounds. Rubber Chem. Technol., 1982, 55(5), 1354-1369. doi:10.5254/1.3535934http://dx.doi.org/10.5254/1.3535934
Ehabé E.; Bonfils F.; Aymard C.; Akinlabi A. K.; Sainte Beuve J. Modelling of Mooney viscosity relaxation in natural rubber. Polym. Test., 2005, 24(5), 620-627. doi:10.1016/j.polymertesting.2005.03.006http://dx.doi.org/10.1016/j.polymertesting.2005.03.006
Song Y. H.; Huang D. J. Linear rheology of natural rubber compounds filled with silica, short nylon fiber or both. Polymer, 2018, 134, 71-74. doi:10.1016/j.polymer.2017.11.073http://dx.doi.org/10.1016/j.polymer.2017.11.073
Rolere S.; Cartault M.; Sainte-Beuve J.; Bonfils F. A rheological method exploiting Cole-Cole plot allows gel quantification in natural rubber. Polym. Test., 2017, 61, 378-385. doi:10.1016/j.polymertesting.2017.05.043http://dx.doi.org/10.1016/j.polymertesting.2017.05.043
Nie S. L.; Lacayo-Pineda J.; Willenbacher N.; Wilhelm M. Aging of natural rubber studied via Fourier-transform rheology and double quantum NMR to correlate local chain dynamics with macroscopic mechanical response. Polymer, 2019, 181, 121804. doi:10.1016/j.polymer.2019.121804http://dx.doi.org/10.1016/j.polymer.2019.121804
Nkayem D. E. N.; Alegria A.; Arrese-Igor S.; Nkengafac N. J. Rheological and thermal properties of purified raw natural rubber. J. Rubber Res., 2021, 24(5), 709-717. doi:10.1007/s42464-021-00125-4http://dx.doi.org/10.1007/s42464-021-00125-4
Amnuaypornsri S.; Sakdapipanich J.; Tanaka Y. Green strength of natural rubber: the origin of the stress-strain behavior of natural rubber. J. Appl. Polym. Sci., 2009, 111(4), 2127-2133. doi:10.1002/app.29226http://dx.doi.org/10.1002/app.29226
Xu H. L.; Fan X. P.; Song Y. H.; Zheng Q. Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites. Compos. Sci. Technol., 2020, 187, 107943. doi:10.1016/j.compscitech.2019.107943http://dx.doi.org/10.1016/j.compscitech.2019.107943
Huang C.; Zhang J. Q.; Cai X. F.; Huang G. S.; Wu J. R. The effects of proteins and phospholipids on the network structure of natural rubber: a rheological study in bulk and in solution. J. Polym. Res., 2020, 27(6), 158. doi:10.1007/s10965-020-02147-9http://dx.doi.org/10.1007/s10965-020-02147-9
Dai Q. Q.; Zhang X. Q.; Hu Y. M.; He J. Y.; Shi C.; Li Y. Q.; Bai C. X. Regulation of the cis-1,4- and trans-1,4-polybutadiene multiblock copolymers via chain shuttling polymerization using a ternary neodymium organic sulfonate catalyst. Macromolecules, 2017, 50(20), 7887-7894. doi:10.1021/acs.macromol.7b01049http://dx.doi.org/10.1021/acs.macromol.7b01049
白晨曦, 代全权, 祁彦龙, 贺剑云, 崔龙. 一种多肽改性丁二烯-异戊二烯共聚物橡胶及其制备方法和硫化橡胶. 中国专利 CN114031702A. 2021-11-11.
刘双, 曹晓, 张嘉琪, 韩迎春, 赵欣悦, 陈全. 流变技术在高分子表征中的应用: 如何正确地进行剪切流变测试. 高分子学报, 2021, 52(4), 406-422. doi:10.11777/j.issn1000-3304.2020.20230http://dx.doi.org/10.11777/j.issn1000-3304.2020.20230
Abdel-Goad M.; Pyckhout-Hintzen W.; Kahle S.; Allgaier J.; Richter D.; Fetters L. J. Rheological properties of 1,4-polyisoprene over a large molecular weight range. Macromolecules, 2004, 37(21), 8135-8144. doi:10.1021/ma030557+http://dx.doi.org/10.1021/ma030557+
Chen Q. A.; Matsumiya Y.; Masubuchi Y.; Watanabe H.; Inoue T. Dynamics of polyisoprene-poly(p-tert-butylstyrene) diblock copolymer in disordered state. Macromolecules, 2011, 44(6), 1585-1602. doi:10.1021/ma102595fhttp://dx.doi.org/10.1021/ma102595f
Fetters L. J.; Lohse D. J.; Colby, R. H. Chain dimensions and entanglement spacings. In: Physical Properties of Polymers Handbook. New York: Springer, 2007. 447-454. doi:10.1007/978-0-387-69002-5_25http://dx.doi.org/10.1007/978-0-387-69002-5_25
Watanabe H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci., 1999, 24(9), 1253-1403. doi:10.1016/s0079-6700(99)00029-5http://dx.doi.org/10.1016/s0079-6700(99)00029-5
McLeish T. C. B. Tube theory of entangled polymer dynamics. Adv. Phys., 2002, 51(6), 1379-1527. doi:10.1080/00018730210153216http://dx.doi.org/10.1080/00018730210153216
Doi M.; Edwards S. F. The Theory of Polymer Dynamics. Oxford: Clarendon Press, 1986. Chapter 7, 255-558.
Kimura S.; Osaki K.; Kurata M. Stress relaxation of polybutadiene at large deformation. J. Polym. Sci. B, 1981, 19, 151-163. doi:10.1002/pol.1981.180190113http://dx.doi.org/10.1002/pol.1981.180190113
Osaki K. On the damping function of shear relaxation modulus for entangled polymers. Rheol. Acta, 1993, 32(5), 429-437. doi:10.1007/bf00396173http://dx.doi.org/10.1007/bf00396173
Osaki K.; Watanabe H.; Inoue T. Damping function of the shear relaxation modulus and the chain retraction process of entangled polymers. Macromolecules, 1996, 29(10), 3611-3614. doi:10.1021/ma951411ghttp://dx.doi.org/10.1021/ma951411g
Urakawa O.; Takahashi M.; Masuda T.; Ebrahimi N. G. Damping functions and chain relaxation in uniaxial and biaxial extensions: comparison with the Doi-Edwards theory. Macromolecules, 1995, 28(21), 7196-7201. doi:10.1021/ma00125a023http://dx.doi.org/10.1021/ma00125a023
Zhang J. Q.; Zhang Y. J.; Zhang C. Y.; Chen Q. Structural and rheological properties of PP/EPR/PE alloys. Chinese J. Polym. Sci., 2023, 41(2), 240-249. doi:10.1007/s10118-022-2849-3http://dx.doi.org/10.1007/s10118-022-2849-3
Wu S. L.; Yang H. H.; Huang S. Y.; Chen Q. A. Relationship between reaction kinetics and chain dynamics of vitrimers based on dioxaborolane metathesis. Macromolecules, 2020, 53(4), 1180-1190. doi:10.1021/acs.macromol.9b02162http://dx.doi.org/10.1021/acs.macromol.9b02162
Mu Y.; Zhao G. Q.; Wu X. H.; Zhai J. Q. Modeling and simulation of three-dimensional planar contraction flow of viscoelastic fluids with PTT, Giesekus and FENE-P constitutive models. Appl. Math. Comput., 2012, 218(17), 8429-8443. doi:10.1016/j.amc.2012.01.067http://dx.doi.org/10.1016/j.amc.2012.01.067
Konaganti V. K.; Ansari M.; Mitsoulis E.; Hatzikiriakos S. G. Extrudate swell of a high-density polyethylene melt: II. Modeling using integral and differential constitutive equations. J. Non Newton. Fluid Mech., 2015, 225, 94-105. doi:10.1016/j.jnnfm.2015.07.005http://dx.doi.org/10.1016/j.jnnfm.2015.07.005
Bick D. K.; McLeish T. C. B. Topological contributions to nonlinear elasticity in branched polymers. Phys. Rev. Lett., 1996, 76(14), 2587-2590. doi:10.1103/physrevlett.76.2587http://dx.doi.org/10.1103/physrevlett.76.2587
Archer L. A.; Varshney S. K. Synthesis and relaxation dynamics of multiarm polybutadiene melts. Macromolecules, 1998, 31(18), 6348-6355. doi:10.1021/ma9802733http://dx.doi.org/10.1021/ma9802733
0
浏览量
297
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构