浏览全部资源
扫码关注微信
1.天津大学材料科学与工程学院 天津 300350
2.廊坊开发区中油科新化工有限责任公司 廊坊 065000
E-mail: lilypan@tju.edu.cn
纸质出版日期:2024-04-20,
网络出版日期:2023-12-29,
收稿日期:2023-10-14,
录用日期:2023-11-10
移动端阅览
姜子豪, 李鑫源, 回立为, 康宇泽, 王菲, 蔡浩, 潘莉, 李悦生. 超高分子量聚α-烯烃的高效合成及其减阻性能研究. 高分子学报, 2024, 55(4), 419-427
Jiang, Z. H.; Li, X. Y.; Hui, L. W.; Kang, Y. Z.; Wang, F.; Cai, H.; Pan, L.; Li, Y. S. Efficient synthesis and drag reduction properties of ultra-high molecular weight poly-α-olefin. Acta Polymerica Sinica, 2024, 55(4), 419-427
姜子豪, 李鑫源, 回立为, 康宇泽, 王菲, 蔡浩, 潘莉, 李悦生. 超高分子量聚α-烯烃的高效合成及其减阻性能研究. 高分子学报, 2024, 55(4), 419-427 DOI: 10.11777/j.issn1000-3304.2023.23247.
Jiang, Z. H.; Li, X. Y.; Hui, L. W.; Kang, Y. Z.; Wang, F.; Cai, H.; Pan, L.; Li, Y. S. Efficient synthesis and drag reduction properties of ultra-high molecular weight poly-α-olefin. Acta Polymerica Sinica, 2024, 55(4), 419-427 DOI: 10.11777/j.issn1000-3304.2023.23247.
利用第四代Ziegler-Natta催化体系——负载在MgCl
2
上的TiCl
4
为主催化剂,三乙基铝(Et
3
Al)为助催化剂,甲基环己基二甲氧基硅烷(CHMDMS)为外给电子体,在磁力搅拌和机械搅拌2种条件下催化1-辛烯和1-癸烯共聚合,制得了一系列高减阻性能聚
α
-烯烃(Poly-alpha-olefin,PAO)类减阻剂. 利用高温凝胶渗透色谱仪测得聚合物的重均分子量(
M
w
)在3×10
6
以上,分子量分布指数(PDI)基本在3.04以内. 进一步通过低温机械搅拌可实现更窄的聚合物分子量分布(1.27~1.90). 通过核磁共振(
13
C-NMR)对聚合物进行分子结构表征,结果表明得到了目标产物、无单体残留,且聚合物中单体比例与投料比基本一致. 示差扫描量热法(DSC)和X射线衍射(XRD)测试结果表明,成功合成了无结晶行为的聚合物. 热重分析(TGA)结果表明,该聚合物在氮气气氛下的热分解温度在300 ℃以上,远高于使用温度. 环路管道循环实验表明,随着聚合物分子量增加,减阻效率整体呈增加趋势,共聚物的减阻效率大于均聚物;随着单体与催化剂的摩尔比增加,减阻效率先升高后降低. 相较已有报道,减阻性能有较大提升,最高减阻率可达50%.
Using 1-octene and 1-decene as monomers
and a catalytic system of TiCl
4
(a fourth-generation Ziegler-Natta catalyst) loaded on MgCl
2
as the main catalyst
triethylaluminium (Et
3
Al) as a co-catalyst
and methylcyclohexyldimethoxysilane (CHMDMS) as the external electron donor
under both magnetic stirring and mechanical stirring conditions
respectively
a series of poly-
α
-olefin (PAO)-based drag reducer were successfully prepared. As proven by high-temperature gel permeation chromatography
the newly obtained polymers not only had very high molecular weight
(weight average molecular weight of most of the polymers was higher than 3×10
6
)
but also had very narrow molecular weight distribution (polymer dispersity index was lower than 3.0 for most of the polymers)
suggesting a uniform distribution of all polymer chains. The obtained polymers were characterized by
13
C-nuclear magnetic resonance (
13
C-NMR)
differential scanning calorimetry (DSC)
thermal gravimetric analyzer (TGA) and X-ray diffraction (XRD)
respectively. It turned out that target polymers with expected composition were obtained. Most of the polymers were amorphous
making them well-soluble in oils. All polymers showed high decomposition temperature beyond 300 ℃
much higher than working temperature of drag reducers. The loop pipeline cycling experiment indicated that the drag reduction efficiency of the newly obtained polymers was greatly improved compared with those of commercial products and previous reports.
减阻剂聚α-烯烃减阻率Ziegler-Natta催化剂
Drag reducerPoly-α-olefinDrag reduction efficiencyZiegler-Natta catalysts
高振宇, 张慧宇, 高鹏. 2022年中国油气管道建设新进展. 国际石油经济, 2023, 31(3), 16-23. doi:10.3969/j.issn.1004-7298.2023.03.003http://dx.doi.org/10.3969/j.issn.1004-7298.2023.03.003
Ayegba P. O.; Edomwonyi-Otu L. C.; Abubakar A.; Yusuf N. Drag reduction by additives in curved pipes for single-phase liquid and two-phase flows: a review. Preprints, 2020, 3(3), e12294.
Nifant'ev I. E.; Shlyakhtin A. V.; Tavtorkin A. N.; Korchagina S. A.; Chinova M. S.; Vinogradov A. A.; Vinogradov A. A.; Roznyatovsky V. A.; Khaidapova D. D.; Ivchenko P. V. The synthesis of ultra-high molecular weight poly(1-hexene)s by low-temperature Ziegler-Natta precipitation polymerization in fluorous reaction media. Polymer, 2018, 139, 98-106. doi:10.1016/j.polymer.2018.02.011http://dx.doi.org/10.1016/j.polymer.2018.02.011
李国平, 杨睿, 汪昆华. 国内外减阻剂研制及生产新进展. 油气储运, 2000, 19(1), 3-7. doi:10.3969/j.issn.1000-8241-D.2000.01.002http://dx.doi.org/10.3969/j.issn.1000-8241-D.2000.01.002
Benzi R. A short review on drag reduction by polymers in wall bounded turbulence. Phys. D, 2010, 239(14), 1338-1345. doi:10.1016/j.physd.2009.07.013http://dx.doi.org/10.1016/j.physd.2009.07.013
陶亮亮, 胡瑞, 马雄, 丁雷涛. 油气管输中减阻剂的应用现状及发展趋势. 石油化工应用, 2011, 30(4), 8-12. doi:10.3969/j.issn.1673-5285.2011.04.003http://dx.doi.org/10.3969/j.issn.1673-5285.2011.04.003
李永飞, 王彦玲, 曹勋臣, 刘飞, 金碧涛, 王刚霄. 页岩储层压裂用减阻剂的研究及应用进展. 精细化工, 2018, 35(1), 1-9.
崔强, 张金功, 薛涛. 疏水缔合聚合物减阻剂的合成及流变性能. 精细化工, 2018, 35(1), 149-157.
Toms B. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. First International Congress on Rheologyed. 1948. 19-21.
Karami H. R.; Mowla D. A general model for predicting drag reduction in crude oil pipelines. J. Petrol. Sci. Eng., 2013, 111, 78-86. doi:10.1016/j.petrol.2013.08.041http://dx.doi.org/10.1016/j.petrol.2013.08.041
Savins J. G. Drag reduction characteristics of solutions of macromolecules in turbulent pipe flow. Soc. Petrol. Eng. J., 1964, 4, 203-214. doi:10.2118/867-pahttp://dx.doi.org/10.2118/867-pa
Virk, P. S. The Toms phenomenon: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech., 1967, 30(2), 305-328. doi:10.1017/s0022112067001442http://dx.doi.org/10.1017/s0022112067001442
Virk P. S.; Baher H. The effect of polymer concentration on drag reduction. Chem. Eng. Sci., 1970, 25(7), 1183-1189. doi:10.1016/0009-2509(70)85008-4http://dx.doi.org/10.1016/0009-2509(70)85008-4
Virk P. S. Drag reduction fundamentals. AlChE. J., 1975, 21(4), 625-656. doi:10.1002/aic.690210402http://dx.doi.org/10.1002/aic.690210402
Li F. C.; Kawaguchi Y.; Hishida K. Structural analysis of turbulent transport in a heated drag-reducing channel flow with surfactant additives. Int. J. Heat Mass Transf., 2005, 48(5), 965-973. doi:10.1016/j.ijheatmasstransfer.2004.09.029http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.09.029
Li F. C.; Kawaguchi Y.; Hishida K. Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow. Phys. Fluids, 2004, 16(9), 3281-3295. doi:10.1063/1.1769375http://dx.doi.org/10.1063/1.1769375
Kim K.; Sirviente A. I. Turbulence structure of polymer turbulent channel flow with and without macromolecular polymer structures. Exp. Fluids, 2005, 38(6), 739-749. doi:10.1007/s00348-005-0954-zhttp://dx.doi.org/10.1007/s00348-005-0954-z
Zabihi R.; Mowla D.; Karami H. R. Artificial intelligence approach to predict drag reduction in crude oil pipelines. J. Petrol. Sci. Eng., 2019, 178, 586-593. doi:10.1016/j.petrol.2019.03.042http://dx.doi.org/10.1016/j.petrol.2019.03.042
朱勤勤, 郑文, 封麟先, 杨士林, 吴嘉. 原油与油品输送减阻剂的研制 Ⅱ.EPO型减阻剂. 油田化学, 1988, 5(4), 279-284.
Kelland M. A. Production Chemicals for the Oil and Gas Industry. 2nd ed. Boca Raton: CRC Press, 2014. 172-176. doi:10.1201/b16648http://dx.doi.org/10.1201/b16648
Liang T.; Goudari S. B.; Chen C. L. A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins. Nat. Commun., 2020, 11, 372. doi:10.1038/s41467-019-14211-0http://dx.doi.org/10.1038/s41467-019-14211-0
杨士林; 朱勤勤; 吴国光; 李绍炜. 油品流动减阻剂的研制ⅰ. EP型减阻剂. 油田化学, 1985, 2, 123-130.
Burger, Munk, Wahl. Flow increase in the trans Alaska pipeline through use of a polymeric drag-reducing additive. J. Petrol. Technol., 1982, 34(2), 377-386. doi:10.2118/9419-pahttp://dx.doi.org/10.2118/9419-pa
徐志鹏, 高明智, 刘明超, 刘海涛, 徐秦文. Ziegler-Natta催化剂制备超高相对分子质量聚1-辛烯. 石油化工, 2018, 47(6), 557-561. doi:10.3969/j.issn.1000-8144.2018.06.006http://dx.doi.org/10.3969/j.issn.1000-8144.2018.06.006
马艳红, 陆江银, 朱桂丹, 魏生华. 1-戊烯/1-十二烯高分子减阻剂的合成与评价. 现代化工, 2017, 37(3), 84-87.
李东城, 李隆伟, 唐萍, 赵巍, 王海, 宾月珍. 长侧链聚α-烯烃减阻剂的合成及性能. 精细化工, 2020, 37(5), 1045-1050.
Wang X. Y.; Yang F.; Cao D. F.; Ma Z.; Pan L.; Li Y. S. Structure and property of comb-like polyolefins derived from highly Stereospecific homo-polymerization of higher α-olefins. Polymer, 2021, 213, 123223. doi:10.1016/j.polymer.2020.123223http://dx.doi.org/10.1016/j.polymer.2020.123223
Shirbakht S.; Mirmohammadi S. A.; Didehban K.; Sadjadi S.; Bahri-Laleh N. Effects of monomer length on α-olefins polymerization using a conventional Ziegler-Natta catalyst. Adv. Polym. Technol., 2018, 37(7), 2588-2596. doi:10.1002/adv.21934http://dx.doi.org/10.1002/adv.21934
Matsko, M. A.; Echevskaya, L. G.; Zakharov, V. A. 1-Hexene polymerization on a highly active titanium-magnesium catalyst. Kinet. Catal., 2020, 61(1), 40-57. doi:10.1134/s002315842001005xhttp://dx.doi.org/10.1134/s002315842001005x
税碧垣, 刘兵, 李国平, 孔令强. 减阻剂的模拟环道评价. 油气储运, 2001, 20(3), 45-50. doi:10.3969/j.issn.1000-8241-D.2001.03.014http://dx.doi.org/10.3969/j.issn.1000-8241-D.2001.03.014
SY/T 6578-2016. 输油管道添加减阻剂输送技术规范. 北京: 石油工业出版社, 2016.
0
浏览量
231
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构