浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
3.南京农业大学食品科技学院 南京 210095
E-mail: yonggang@ciac.ac.cn
qchen@ciac.ac.cn
纸质出版日期:2024-03-20,
网络出版日期:2024-01-17,
收稿日期:2023-10-24,
录用日期:2023-11-28
移动端阅览
赵欣悦, 李培通, 刘砚华, 胡冰, 刘勇刚, 陈全. 壳聚糖-京尼平纳米凝胶体系交联动力学与应用. 高分子学报, 2024, 55(3), 275-286
Zhao, X. Y.; Li, P. T.; Liu, Y. H.; Hu, B.; Liu, Y. G.; Chen, Q. Crosslinking kinetics and application of chitosan-genipin nanogel. Acta Polymerica Sinica, 2024, 55(3), 275-286
赵欣悦, 李培通, 刘砚华, 胡冰, 刘勇刚, 陈全. 壳聚糖-京尼平纳米凝胶体系交联动力学与应用. 高分子学报, 2024, 55(3), 275-286 DOI: 10.11777/j.issn1000-3304.2023.23253.
Zhao, X. Y.; Li, P. T.; Liu, Y. H.; Hu, B.; Liu, Y. G.; Chen, Q. Crosslinking kinetics and application of chitosan-genipin nanogel. Acta Polymerica Sinica, 2024, 55(3), 275-286 DOI: 10.11777/j.issn1000-3304.2023.23253.
天然交联剂京尼平交联壳聚糖稀溶液可得到具有生物相容性的纳米凝胶. 利用非对称流场流分离(AF4)对该纳米凝胶交联过程中的尺寸分布及结构演化进行系统研究,发现纳米凝胶分子量分布很宽,跨越3个数量级,但尺寸分布较窄. 为探究该规律的普适性,系统研究了预聚物链的分子量以及交联剂浓度对于凝胶行为的影响. 发现:(1)不同分子量预聚物得到的纳米凝胶具有相似的尺寸与分子量分布特征,其中相同分子量产物的特征尺寸会随着预聚物分子量的降低而减小,这一现象是由于达到相同尺寸时,低分子量预聚物形成凝胶支化程度更高造成的,这一结论也进一步通过分析比较反应程度与链内密度得到证实;(2)随着交联浓度的提高,凝胶特征尺寸先逐渐降低再逐渐升高. 这是由于京尼平具有2个交联位点,交联分两步进行,尺寸降低是由于链内交联密度增加造成纳米凝胶网络结构塌缩,后续尺寸升高是由于第一步交联过度后,反而不利于第二步交联的进行;(3)制备的壳聚糖-京尼平纳米凝胶由于其尺寸的均一性和亲疏水平衡性,可作高效乳化剂制备Pickering乳液:仅需要0.57 wt%的壳聚糖纳米凝胶就可以制备稳定的含油量可高达90%的Pickering乳液.
The natural crosslinking agent genipin can crosslink chitosan in a dilute solution to obtain biocompatible nanogel particles. The particles can be used as the emulsifier of Pickering emulsion. This study examines the conformation and structural evolutions using asymmetric flow field-flow fractionation (AF4) combined with multiple detectors. The nanogel particles show an extremely wide molecular weight distribution but a much narrower size distribution. To explore the universality of this behavior
we adjusted the molecular weight of the prepolymer chain and the crosslinker concentration
respectively. The nanogels obtained from prepolymers with different molecular weights exhibit similar molecular weight and size distributions
but the characteristic size decreases with decreasing
M
of the prepolymers. This latter trend is due to the higher crosslinking density and accordingly the higher internal density for the nanogel based on prepolymer of the lower
M
. For a given prepolymer
the characteristic size first decreases and then increases with the crosslinker concentration. The former decrease is caused by the enhancement of intrachain crosslinking
whereas the later increase is attributable to the excessive crosslinkers that attach to the polymer chain as dangling molecules
which suppresses the further intra- or interchain crosslinking reaction. Finally
the nanogel particles obtained in this study turn out to be an efficient emulsifier in preparing high internal phase emulsion due to its uniform size
high specific surface area and balance between hydrophilicity and lipophilicity: a Pickering emulsion with oil content of up to 90% can be stabilized using only 0.57 wt% of the nanogel particles.
壳聚糖京尼平交联纳米凝胶场流分离高内相乳液
ChitosanGenipinCrosslinkingNanogelField-flow fractionationHigh internal phase emulsion
Ashfaq A.; An J. C.; Ulański P.; Al-Sheikhly M. On the mechanism and kinetics of synthesizing polymer nanogels by ionizing radiation-induced intramolecular crosslinking of macromolecules. Pharmaceutics, 2021, 13(11), 1765. doi:10.3390/pharmaceutics13111765http://dx.doi.org/10.3390/pharmaceutics13111765
Wang Y.; Luo Y. Y.; Zhao Q. A.; Wang Z. J.; Xu Z. J.; Jia X. R. An enzyme-responsive nanogel carrier based on PAMAM dendrimers for drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(31), 19899-19906. doi:10.1021/acsami.6b05567http://dx.doi.org/10.1021/acsami.6b05567
Kabanov A. V.; Vinogradov S. V. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed., 2009, 48(30), 5418-5429. doi:10.1002/anie.200900441http://dx.doi.org/10.1002/anie.200900441
Sasaki Y.; Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec., 2010, 10(6), 366-376. doi:10.1002/tcr.201000008http://dx.doi.org/10.1002/tcr.201000008
Yadav H. K.; Halabi N. A. A.; Alsalloum G. A. Nanogels as novel drug delivery systems: a review. J. Pharm. Pharma. Res., 2017, 1, 5.
Huynh U.; Wu P. D.; Qiu J. Y.; Prachyathipsakul T.; Singh K.; Jerry D. J.; Gao J. J.; Thayumanavan S. Targeted drug delivery using a plug-to-direct antibody-nanogel conjugate. Biomacromolecules, 2023, 24(2), 849-857. doi:10.1021/acs.biomac.2c01269http://dx.doi.org/10.1021/acs.biomac.2c01269
Bhattarai N.; Gunn J.; Zhang M. Q. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99. doi:10.1016/j.addr.2009.07.019http://dx.doi.org/10.1016/j.addr.2009.07.019
Hamedi H.; Moradi S.; Hudson S. M.; Tonelli A. E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr. Polym., 2018, 199, 445-460. doi:10.1016/j.carbpol.2018.06.114http://dx.doi.org/10.1016/j.carbpol.2018.06.114
Wu T. P.; Li Y.; Lee D. S. Chitosan-based composite hydrogels for biomedical applications. Macromol. Res., 2017, 25(6), 480-488. doi:10.1007/s13233-017-5066-0http://dx.doi.org/10.1007/s13233-017-5066-0
Sacco P.; Borgogna M.; Travan A.; Marsich E.; Paoletti S.; Asaro F.; Grassi M.; Donati I. Polysaccharide-based networks from homogeneous chitosan-tripolyphosphate hydrogels: synthesis and characterization. Biomacromolecules, 2014, 15(9), 3396-3405. doi:10.1021/bm500909nhttp://dx.doi.org/10.1021/bm500909n
Nishi C. K.; Nakajima N.; Ikada Y. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J. Biomed. Mater. Res., 1995, 29(7), 829-834. doi:10.1002/jbm.820290707http://dx.doi.org/10.1002/jbm.820290707
Manickam B.; Sreedharan R.; Elumalai M. 'Genipin'-the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview. Curr. Drug Deliv., 2014, 11(1), 139-145. doi:10.2174/15672018113106660059http://dx.doi.org/10.2174/15672018113106660059
Muzzarelli R. A. A.; El Mehtedi M.; Bottegoni C.; Aquili A.; Gigante A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar. Drugs, 2015, 13(12), 7314-7338. doi:10.3390/md13127068http://dx.doi.org/10.3390/md13127068
Muzzarelli R. A. A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr. Polym., 2009, 77(1), 1-9. doi:10.1016/j.carbpol.2009.01.016http://dx.doi.org/10.1016/j.carbpol.2009.01.016
Touyama R.; Takeda Y.; Inoue K.; Kawamura I.; Yatsuzuka M.; Ikumoto T.; Shingu T.; Yokoi T.; Inouye H. Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem. Pharm. Bull., 1994, 42(3), 668-673. doi:10.1248/cpb.42.668http://dx.doi.org/10.1248/cpb.42.668
Li Q.; Wang X. L.; Lou X. X.; Yuan H. H.; Tu H. B.; Li B. Y.; Zhang Y. Z. Genipin-crosslinked electrospun chitosan nanofibers: determination of crosslinking conditions and evaluation of cytocompatibility. Carbohydr. Polym., 2015, 130, 166-174. doi:10.1016/j.carbpol.2015.05.039http://dx.doi.org/10.1016/j.carbpol.2015.05.039
Ramos-de-la-Peña A. M.; Renard C. M. G. C.; Wicker L.; Montañez J. C.; García-Cerda L. A.; Contreras-Esquivel J. C. Environmental friendly cold-mechanical/sonic enzymatic assisted extraction of genipin from genipap (Genipa americana). Ultrason. Sonochem., 2014, 21(1), 43-49. doi:10.1016/j.ultsonch.2013.06.008http://dx.doi.org/10.1016/j.ultsonch.2013.06.008
Neri-Numa I. A.; Pessoa M. G.; Paulino B. N.; Pastore G. M. Genipin: a natural blue pigment for food and health purposes. Trends Food Sci. Technol., 2017, 67, 271-279. doi:10.1016/j.tifs.2017.06.018http://dx.doi.org/10.1016/j.tifs.2017.06.018
Mi F. L.; Sung H. W.; Shyu S. S. Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J. Polym. Sci. Poly. Chem., 2000, 38(15), 2804-2814. doi:10.1002/1099-0518(20000801)38:15<2804::aid-pola210>3.0.co;2-yhttp://dx.doi.org/10.1002/1099-0518(20000801)38:15<2804::aid-pola210>3.0.co;2-y
Mi F. L.; Sung H. W.; Shyu S. S.; Su C. C.; Peng C. K. Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer, 2003, 44(21), 6521-6530. doi:10.1016/s0032-3861(03)00620-7http://dx.doi.org/10.1016/s0032-3861(03)00620-7
Moura M. J.; Faneca H.; Lima M. P.; Gil M. H.; Figueiredo M. M. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking. Biomacromolecules, 2011, 12(9), 3275-3284. doi:10.1021/bm200731xhttp://dx.doi.org/10.1021/bm200731x
Dimida S.; Demitri C.; de Benedictis V. M.; Scalera F.; Gervaso F.; Sannino A. Genipin-cross-linked chitosan-based hydrogels: reaction kinetics and structure-related characteristics. J. Appl. Polym. Sci., 2015, 132(28), Doi: 10.1002/app.42256. doi:10.1002/app.42256http://dx.doi.org/10.1002/app.42256
Hu K. P.; Jia E. N.; Zhang Q. M.; Zheng W.; Sun R. J.; Qian M. G.; Tan Y.; Hu W. L. Injectable carboxymethyl chitosan-genipin hydrogels encapsulating tea tree oil for wound healing. Carbohydr. Polym., 2023, 301, 120348. doi:10.1016/j.carbpol.2022.120348http://dx.doi.org/10.1016/j.carbpol.2022.120348
Hu B.; Li Y. Q.; Chen Q.; Zhang Z. J.; Shi C.; Li W. Facile preparation of biocompatible polymer microgels with tunable properties and unique functions to solely stabilize high internal phase emulsions. Chem. Eng. J., 2017, 315, 500-508. doi:10.1016/j.cej.2017.01.052http://dx.doi.org/10.1016/j.cej.2017.01.052
Heimbuck A. M.; Priddy-Arrington T. R.; Sawyer B. J.; Caldorera-Moore M. E. Effects of post-processing methods on chitosan-genipin hydrogel properties. Mater. Sci. Eng. C, 2019, 98, 612-618. doi:10.1016/j.msec.2018.12.119http://dx.doi.org/10.1016/j.msec.2018.12.119
Zhao X. Y.; Tang J.; Liu Y. H.; Hu B.; Chen Q.; Liu Y. G. Reaction kinetics of chitosan nanogels crosslinked by genipin. J. Chromatogr. A, 2023, 1710, 464427. doi:10.1016/j.chroma.2023.464427http://dx.doi.org/10.1016/j.chroma.2023.464427
Wahlund K. G. Flow field-flow fractionation: critical overview. J. Chromatogr. A, 2013, 1287, 97-112. doi:10.1016/j.chroma.2013.02.028http://dx.doi.org/10.1016/j.chroma.2013.02.028
Wagner M.; Holzschuh S.; Traeger A.; Fahr A.; Schubert U. S. Asymmetric flow field-flow fractionation in the field of nanomedicine. Anal. Chem., 2014, 86(11), 5201-5210. doi:10.1021/ac501664thttp://dx.doi.org/10.1021/ac501664t
González-Espinosa Y.; Sabagh B.; Moldenhauer E.; Clarke P.; Goycoolea F. M. Characterisation of chitosan molecular weight distribution by multi-detection asymmetric flow-field flow fractionation (AF4) and SEC. Int. J. Biol. Macromol., 2019, 136, 911-919. doi:10.1016/j.ijbiomac.2019.06.122http://dx.doi.org/10.1016/j.ijbiomac.2019.06.122
Kang Y.; Wu X. X.; Ji X. L.; Bo S. Q.; Liu Y. G. Strategy to improve the characterization of chitosan by size exclusion chromatography coupled with multi angle laser light scattering. Carbohydr. Polym., 2018, 202, 99-105. doi:10.1016/j.carbpol.2018.08.125http://dx.doi.org/10.1016/j.carbpol.2018.08.125
Kang Y.; Wu X. X.; Chen Q.; Ji X. L.; Bo S. Q.; Liu Y. G. Adsorption of poly(vinyl alcohol) on gel permeation chromatography columns depends on the degree of hydrolysis. J. Chromatogr. A, 2019, 1585, 138-143. doi:10.1016/j.chroma.2018.11.062http://dx.doi.org/10.1016/j.chroma.2018.11.062
Andersson M.; Wittgren B.; Wahlund K. G. Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments. Anal. Chem., 2003, 75(16), 4279-4291. doi:10.1021/ac030128+http://dx.doi.org/10.1021/ac030128+
Liu Y. G.; Radke W.; Pasch H. Coil-stretch transition of high molar mass polymers in packed-column hydrodynamic chromatography. Macromolecules, 2005, 38(17), 7476-7484. doi:10.1021/ma050964ghttp://dx.doi.org/10.1021/ma050964g
Berry G. C. Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J. Chem. Phys., 1966, 44(12), 4550-4564. doi:10.1063/1.1726673http://dx.doi.org/10.1063/1.1726673
0
浏览量
524
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构