浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
E-mail: k.zhang@scu.edu.cn
yangmb@scu.edu.cn
纸质出版日期:2024-08-20,
网络出版日期:2024-04-30,
收稿日期:2023-12-30,
录用日期:2024-03-17
移动端阅览
冯子惟, 李梦蕾, 李培尧, 张凯, 杨鸣波. 利用机械化学法“一步”制备月桂酸纤维素酯. 高分子学报, 2024, 55(8), 986-1000
Feng, Z. W.; Li, M. L.; Li, P. Y.; Zhang, K.; Yang, M. B. Direct one-step synthesis of cellulose laurate ester via mechanochemical method. Acta Polymerica Sinica, 2024, 55(8), 986-1000
冯子惟, 李梦蕾, 李培尧, 张凯, 杨鸣波. 利用机械化学法“一步”制备月桂酸纤维素酯. 高分子学报, 2024, 55(8), 986-1000 DOI: 10.11777/j.issn1000-3304.2023.23304.
Feng, Z. W.; Li, M. L.; Li, P. Y.; Zhang, K.; Yang, M. B. Direct one-step synthesis of cellulose laurate ester via mechanochemical method. Acta Polymerica Sinica, 2024, 55(8), 986-1000 DOI: 10.11777/j.issn1000-3304.2023.23304.
以微晶纤维素(MCC)、三氟乙酸酐(TFAA)和长链月桂酸(LA)为原料,通过机械球磨一步法制备具有高取代度(DS
>
2.5)的月桂酸纤维素酯(LCE),并探讨了机械化学条件对产物取代度、熔融行为和热稳定性的影响. 结果表明,随着球磨转速和球磨时间的增加,产物LCE的取代度提高,熔融温度下降,当DS≥2.81时,能得到完全熔融的LCE. 在投料比为1:6:3,且以400 r/min球磨处理4 h时,能制备流动温度(
T
f
)为115 ℃且分解温度高达324 ℃的纤维素月桂酸酯. 此外,初步探讨了在体系中引入PVA对过量的TFAA以及副产物三氟乙酸进行收酸的效果,分析数据表明PVA成功固定了三氟乙酸. 本策略在简化制备过程、减少单体用量、缩短反应时间和环境友好等方面相较于传统均相手段具有显著的优势,有望应用于工业上大规模地制备热塑性纤维素衍生物.
This study presents a simple method for obtaining LCE with high degree of substitution (DS
>
2.5) by directly utilizing microcrystalline cellulose (MCC)
trifluoracetic anhydride (TFAA)
and long chain lauric acid (LA). The impact of ball milling speed
grinding time
and feeding ratio on substitution
melting behavior
and thermal stability is thoroughly investigated. The results show that with increasing ball milling speed and time
LCE substitution increased and the melting temperature decreased. When the DS is larger than 2.81
LCE can be completely melted. Optimal conditions involve a feed ratio of 1:6:3
and ball milling at 400 r/min for 4 h yields cellulose laurel ester with a flow temperature (
T
f
) of 115 ℃ and a decomposition temperature of 324 ℃. In addition
the introduction of PVA into the system is explored to mitigate excessive TFAA and the side product trifluoroacetic acid. The results show that PVA not only fixed trifluoroacetic acid successfully but also had little effect on the melting and processing properties of the product. This strategy has significant advantages over conventional homogeneous methods
such as streamlining the preparation process
reducing monomer quantities
shortening reaction time
and promoting environmental friendliness. Its potential application in large-scale industrial production of thermoplastic cellulose derivatives is promising.
纤维素月桂酸纤维素酯机械化学非均相反应
CelluloseCellulose laurate esterMechanochemistryHeterogeneous reaction
Moon R. J.; Martini A.; Nairn J.; Simonsen J.; Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994. doi:10.1039/c0cs00108bhttp://dx.doi.org/10.1039/c0cs00108b
Kane I. A.; Clare M. A.; Miramontes E.; Wogelius R.; Rothwell J. J.; Garreau P.; Pohl F. Seafloor microplastic hotspots controlled by deep-sea circulation. Science, 2020, 368(6495), 1140-1145. doi:10.1126/science.aba5899http://dx.doi.org/10.1126/science.aba5899
Li L. Z.; Luo Y. M.; Li R. J.; Zhou Q.; Peijnenburg W. J. G. M.; Yin N.; Yang J.; Tu C.; Zhang Y. C. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain., 2020, 3, 929-937. doi:10.1038/s41893-020-0567-9http://dx.doi.org/10.1038/s41893-020-0567-9
Yu Y.; Tyrikos-Ergas T.; Zhu Y. T.; Fittolani G.; Bordoni V.; Singhal A.; Fair R. J.; Grafmüller A.; Seeberger P. H.; Delbianco M. Systematic hydrogen-bond manipulations to establish polysaccharide structure-property correlations. Angew. Chem. Int. Ed., 2019, 58(37), 13127-13132. doi:10.1002/anie.201906577http://dx.doi.org/10.1002/anie.201906577
Klemm D.; Heublein B.; Fink H. P.; Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 2005, 44(22), 3358-3393. doi:10.1002/anie.200460587http://dx.doi.org/10.1002/anie.200460587
Ye D. Y.; Montané D.; Farriol X. Preparation and characterisation of methylcellulose from annual cardoon and juvenile eucalyptus. Carbohydr. Polym., 2005, 61(4), 446-454. doi:10.1016/j.carbpol.2005.06.013http://dx.doi.org/10.1016/j.carbpol.2005.06.013
Ye D.; Montane D.; Farriol X. Preparation and characterisation of methylcelluloses from. Carbohydr. Polym., 2005, 62(3), 258-266. doi:10.1016/j.carbpol.2005.07.027http://dx.doi.org/10.1016/j.carbpol.2005.07.027
Onwukamike K. N.; Grelier S.; Grau E.; Cramail H.; Meier M. A. R. Sustainable transesterification of cellulose with high oleic sunflower oil in a DBU-CO2 switchable solvent. ACS Sustain. Chem. Eng., 2018, 6(7), 8826-8835. doi:10.1021/acssuschemeng.8b01186http://dx.doi.org/10.1021/acssuschemeng.8b01186
Onwukamike K.; Grelier S.; Grau E.; Cramail H.; Meier M. A. R. Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustainable Chem. Eng., 2019, 7(2), 1826-1840. doi:10.1021/acssuschemeng.8b04990http://dx.doi.org/10.1021/acssuschemeng.8b04990
Kanwar S.; Ali U.; Mazumder K. Effect of cellulose and starch fatty acid esters addition on microstructure and physical properties of Arabinoxylan films. Carbohydr. Polym., 2021, 270, 118317. doi:10.1016/j.carbpol.2021.118317http://dx.doi.org/10.1016/j.carbpol.2021.118317
Men S.; Jiang X. Y.; Xiang X. T.; Sun G. X.; Yan Y. H.; Lyu Z. H.; Jin Y. J. Synthesis of cellulose long-chain esters in 1acetate-butyl-3-methylimidazolium: structure-property relations. Polym. Sci. Ser. B, 2018, 60(3), 349-353. doi:10.1134/s1560090418030144http://dx.doi.org/10.1134/s1560090418030144
Wen X. X.; Wang H. H.; Wei Y.; Wang X. Y.; Liu C. F. Preparation and characterization of cellulose laurate ester by catalyzed transesterification. Carbohydr. Polym., 2017, 168, 247-254. doi:10.1016/j.carbpol.2017.03.074http://dx.doi.org/10.1016/j.carbpol.2017.03.074
Gallego R.; Piras C. C.; Rutgeerts L. A. J.; Fernandez-Prieto S.; de Borggraeve W. M.; Franco J. M.; Smets J. Green approach for the activation and functionalization of jute fibers through ball milling. Cellulose, 2020, 27(2), 643-656. doi:10.1007/s10570-019-02831-0http://dx.doi.org/10.1007/s10570-019-02831-0
Huang L.; Wu Q.; Wang Q. W.; Wolcott M. One-step activation and surface fatty acylation of cellulose fibers in a solvent-free condition. ACS Sustain. Chem. Eng., 2019, 7(19), 15920-15927. doi:10.1021/acssuschemeng.9b01974http://dx.doi.org/10.1021/acssuschemeng.9b01974
Piras C. C.; Fernández-Prieto S.; De Borggraeve W. M. Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv., 2019, 1(3), 937-947. doi:10.1039/c8na00238jhttp://dx.doi.org/10.1039/c8na00238j
Wang G. W. Mechanochemical organic synthesis. Chem. Soc. Rev., 2013, 42(18), 7668-7700. doi:10.1039/c3cs35526hhttp://dx.doi.org/10.1039/c3cs35526h
Wang Z.; Ayarza J.; Esser-Kahn A. P. Mechanically initiated bulk-scale free-radical polymerization. Angew. Chem. Int. Ed., 2019, 131(35), 12151-12154. doi:10.1002/ange.201903956http://dx.doi.org/10.1002/ange.201903956
Amrute A. P.; Zibrowius B.; Schüth F. Mechanochemical grafting: a solvent-less highly efficient method for the synthesis of hybrid inorganic-organic materials. Chem. Mater., 2020, 32(11), 4699-4706. doi:10.1021/acs.chemmater.0c01266http://dx.doi.org/10.1021/acs.chemmater.0c01266
Crawford D. E.; Miskimmin C. K. G.; Albadarin A. B.; Walker G.; James S. L. Organic synthesis by twin screw extrusion (TSE): continuous, scalable and solvent-free. Green Chem., 2017, 19(6), 1507-1518. doi:10.1039/c6gc03413fhttp://dx.doi.org/10.1039/c6gc03413f
Boissou F.; Sayoud N.; De Oliveira Vigier K.; Barakat A.; Marinkovic S.; Estrine B.; Jérôme F. Acid-assisted ball milling of cellulose as an efficient pretreatment process for the production of butyl glycosides. ChemSusChem, 2015, 8(19), 3263-3269. doi:10.1002/cssc.201500700http://dx.doi.org/10.1002/cssc.201500700
Hernández-Varela J. D.; Chanona-Pérez J. J.; Calderón Benavides H. A.; Cervantes Sodi F.; Vicente-Flores M. Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydr. Polym., 2021, 255, 117347. doi:10.1016/j.carbpol.2020.117347http://dx.doi.org/10.1016/j.carbpol.2020.117347
Ling Z.; Wang T.; Makarem M.; Santiago Cintrón M.; Cheng H. N.; Kang X.; Bacher M.; Potthast A.; Rosenau T.; King H.; Delhom C. D.; Nam S.; Vincent Edwards J.; Kim S. H.; Xu F.; French A. D. Effects of ball milling on the structure of cotton cellulose. Cellulose, 2019, 26(1), 305-328. doi:10.1007/s10570-018-02230-xhttp://dx.doi.org/10.1007/s10570-018-02230-x
Tyufekchiev M.; Ralph K.; Duan P.; Yuan S. C.; Schmidt-Rohr K.; Timko M. T. Rapid depolymerization of decrystallized cellulose to soluble products via ethanolysis under mild conditions. ChemSusChem, 2020, 13(10), 2634-2641. doi:10.1002/cssc.201903446http://dx.doi.org/10.1002/cssc.201903446
Huang Z. Q.; Tan Y. F.; Zhang Y. J.; Liu X. P.; Hu H. Y.; Qin Y. B.; Huang H. M. Direct production of cellulose laurate by mechanical activation-strengthened solid phase synthesis. Bioresour. Technol., 2012, 118, 624-627. doi:10.1016/j.biortech.2012.05.082http://dx.doi.org/10.1016/j.biortech.2012.05.082
Chen X.; Zheng N.; Wang Q.; Liu L. Z.; Men Y. F. Side-chain crystallization in alkyl-substituted cellulose esters and hydroxypropyl cellulose esters. Carbohydr. Polym., 2017, 162, 28-34. doi:10.1016/j.carbpol.2017.01.028http://dx.doi.org/10.1016/j.carbpol.2017.01.028
Hanabusa H.; Izgorodina E. I.; Suzuki S.; Takeoka Y.; Rikukawa M.; Yoshizawa-Fujita M. Cellulose-dissolving protic ionic liquids as low cost catalysts for direct transesterification reactions of cellulose. Green Chem., 2018, 20(6), 1412-1422. doi:10.1039/c7gc03603ehttp://dx.doi.org/10.1039/c7gc03603e
Pei M.; Peng X. W.; Shen Y. Q.; Yang Y. L.; Guo Y. L.; Zheng Q.; Xie H. B.; Sun H. Synthesis of water-soluble, fully biobased cellulose levulinate esters through the reaction of cellulose and alpha-angelica lactone in a DBU/CO2/DMSO solvent system. Green Chem., 2020, 22(3), 707-717. doi:10.1039/c9gc03149ahttp://dx.doi.org/10.1039/c9gc03149a
Hinner L. P.; Wissner J. L.; Beurer A.; Nebel B. A.; Hauer B. Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chem., 2016, 18(22), 6099-6107. doi:10.1039/c6gc02005dhttp://dx.doi.org/10.1039/c6gc02005d
Morooka T.; Norimoto M.; Yamada T.; Shiraishi N. Dielectric properties of cellulose acylates. J. Appl. Polym. Sci., 1984, 29(12), 3981-3990. doi:10.1002/app.1984.070291230http://dx.doi.org/10.1002/app.1984.070291230
0
浏览量
139
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构