浏览全部资源
扫码关注微信
武汉大学 生物医用高分子材料教育部重点实验室/化学与分子科学学院武汉430072
E-mail: chenweihai@whu.edu.cn
xz-zhang@whu.edu.cn
网络出版日期:2024-10-07,
收稿日期:2024-07-29,
录用日期:2024-09-03
移动端阅览
姚炜钦, 孙云霞, 陈巍海, 张先正. 益生菌/黑磷纳米片复合材料在肠炎治疗中的应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2024.0207
Yao, W. Q.; Sun, Y. X.; Chen, W. H.; Zhang, X. Z. Application of engineered probiotic-nanosystem for the treatment of enteritis. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2024.0207
姚炜钦, 孙云霞, 陈巍海, 张先正. 益生菌/黑磷纳米片复合材料在肠炎治疗中的应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2024.0207 DOI: 10.11777/j.issn1000-3304.2024.0207;. CSTR: 32057.14.GFZXB.2024.7295.
Yao, W. Q.; Sun, Y. X.; Chen, W. H.; Zhang, X. Z. Application of engineered probiotic-nanosystem for the treatment of enteritis. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2024.0207 DOI: 10.11777/j.issn1000-3304.2024.0207;. CSTR: 32057.14.GFZXB.2024.7295.
长期暴露在重金属离子环境中或误食过量重金属离子都会导致重金属离子在肠道富集,进而引发肠道部位发生持续性的炎症,严重的甚至会导致其他器官发生病变. 因此,在肠道受损部位高效且持续性的清除重金属离子是治疗这一类疾病的关键. 为此,本研究设计、制备了一种益生菌/黑磷纳米片复合材料
实现了肠道部位重金属离子的高效且持续性的清除,并且能够有效修复受损肠道. 通过静电相互作用将氨基封端的聚乙二醇(NH
2
-PEG
2000
-NH
2
)修饰在黑磷纳米片(black phosphorus nanosheets,BPs)表面,随后聚乙二醇化的黑磷纳米片通过酰胺缩合反应与鼠李糖乳杆菌(
Lactobacillus rhamnosus
GG,LGG)结合,构建BPs-LGG益生菌/黑磷纳米片复合材料. 在重金属离子诱导的肠炎小鼠模型中,口服递送BPs-LGG后,鼠李糖乳杆菌能够将黑磷纳米片靶向递送至肠道受损部位并长期定植,从而在肠道受损部位持续、高效地清除重金属离子并缓解炎症. 该治疗策略具有良好的生物安全性,为治疗重金属离子引起的肠道疾病提供了一种安全、有效的思路.
Long-term exposure to heavy metal ions or accidentally consuming excessive amounts of heavy metal ions can induce the accumulation of heavy metal ions in the intestines
leading to chronic inflammation in the intestinal area and even causing
dysfunction of other organs. Therefore
efficient and sustained removal of heavy metal ions from damaged intestinal tissue is crucial for treating such diseases. Here
an engineered probiotic-nanosystem was designed for efficiently and sustainably removing heavy metal ions from the intestinal tract and effectively repairing damaged intestinal tissues. Firstly
NH
2
-poly(ethylene glycol)
2000
-NH
2
(NH
2
-(PEG
2000
)-NH
2
) was modified on the surface of black phosphorus nanosheets (BPs) through electrostatic interactions. Then
the NH
2
-PEG
2000
-NH
2
functionalized BPs were further coupled with
Lactobacillus rhamnosus
GG (LGG) through the amide condensation reaction to form the BPs-LGG probiotic-nanosystem. After oral delivery of the BPs-LGG into the enteritis mouse model induced by heavy metal ion
LGG as the carrier of BPs
could effectively deliver BPs into intestinal area and colonize in the impaired parts of intestines
thus establishing a long-term colonization of BPs. These probiotic-nanosystem achieved a sustained and efficient removal of heavy metal ions and alleviated inflammatory responses in the impaired area of intestines. This therapeutic strategy has an extremely outstanding biocompatibility and provides a promising approach for treating intestinal diseases caused by heavy metal ions
showing the promising potential for potentiating therapeutic efficacy of enteritis.
重金属中毒益生菌黑磷纳米片复合材料肠炎
Heavy metal poisoningProbioticBlack phosphorus nanosheetComposite materialEnteritis
Aaseth J.; Skaug M. A.; Cao Y.; Andersen O.Chelation in metal intoxication—principles and paradigms. J. Trace Elem. Med. Biol., 2015, 31, 260-266. doi:10.1016/j.jtemb.2014.10.001http://dx.doi.org/10.1016/j.jtemb.2014.10.001
Järup L.Hazards of heavy metal contamination. Br. Med. Bull., 2003, 68, 167-182. doi:10.1093/bmb/ldg032http://dx.doi.org/10.1093/bmb/ldg032
Wang X.; Wang B.; Zhou M.; Xiao L. L.; Xu T.; Yang S. J.; Nie X. Q.; Xie L.; Yu L. L.; Mu G.; Ma J. X.; Chen W. H.Systemic inflammation mediates the association of heavy metal exposures with liver injury: a study in general Chinese urban adults. J. Hazard. Mater., 2021, 419, 126497. doi:10.1016/j.jhazmat.2021.126497http://dx.doi.org/10.1016/j.jhazmat.2021.126497
Xu X.; Nie S.; Ding H. Y.; Hou F. F.Environmental pollution and kidney diseases. Nat. Rev. Nephrol., 2018, 14(5), 313-324. doi:10.1038/nrneph.2018.11http://dx.doi.org/10.1038/nrneph.2018.11
Chowdhury S.; Jafar Mazumder M. A.; Al-Attas O.; Husain T.Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ., 2016, 569, 476-488. doi:10.1016/j.scitotenv.2016.06.166http://dx.doi.org/10.1016/j.scitotenv.2016.06.166
Jaishankar M.; Tseten T.; Anbalagan N.; Mathew B. B.; Beeregowda K. N.Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 2014, 7(2), 60-72. doi:10.2478/intox-2014-0009http://dx.doi.org/10.2478/intox-2014-0009
Sakthithasan K.; Lévy P.; Poupon J.; Garnier R.A comparative study of edetate calcium disodium and dimercaptosuccinic acid in the treatment of lead poisoning in adults. Clin. Toxicol., 2018, 56(11), 1143-1149. doi:10.1080/15563650.2018.1478424http://dx.doi.org/10.1080/15563650.2018.1478424
Pan P.; Fan J. X.; Wang X. N.; Wang J. W.; Zheng D. W.; Cheng H.; Zhang X. Z.Bio-orthogonal bacterial reactor for remission of heavy metal poisoning and ROS elimination. Adv. Sci., 2019, 6(24), 1902500. doi:10.1002/advs.201902500http://dx.doi.org/10.1002/advs.201902500
Lamas G. A.; Navas-Acien A.; Mark D. B.; Lee K. L.Heavy metals, cardiovascular disease, and the unexpected benefits of chelation therapy. J. Am. Coll. Cardiol., 2016, 67(20), 2411-2418. doi:10.1016/j.jacc.2016.02.066http://dx.doi.org/10.1016/j.jacc.2016.02.066
Ge X. X.; Xia Z. H.; Guo S. J.Recent advances on black phosphorus for biomedicine and biosensing. Adv. Funct. Mater., 2019, 29(29), 1900318. doi:10.1002/adfm.201900318http://dx.doi.org/10.1002/adfm.201900318
Qian X. Q.; Gu Z.; Chen Y.Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater. Horiz., 2017, 4(5), 800-816. doi:10.1039/c7mh00305fhttp://dx.doi.org/10.1039/c7mh00305f
Wang H.; Jiang S. L.; Shao W.; Zhang X. D.; Chen S. C.; Sun X. S.; Zhang Q.; Luo Y.; Xie Y.Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc., 2018, 140(9), 3474-3480. doi:10.1021/jacs.8b00719http://dx.doi.org/10.1021/jacs.8b00719
Wu L.; Bian S.; Huang H.; Wang J. H.; Liu D. N.; Chu P. K.; Yu X. F.Black phosphorus: an effective feedstock for the synthesis of phosphorus-based chemicals. CCS Chem., 2019, 1(2), 166-172. doi:10.31635/ccschem.019.20180013http://dx.doi.org/10.31635/ccschem.019.20180013
Fojtů M.; Chia X.; Sofer Z.; Masařík M.; Pumera M.Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line. Adv. Funct. Mater., 2017, 27(36), 1701955. doi:10.1002/adfm.201770211http://dx.doi.org/10.1002/adfm.201770211
Jiang Q. Q.; Xu L.; Chen N.; Zhang H.; Dai L. M.; Wang S. Y.Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed., 2016, 55(44), 13849-13853. doi:10.1002/anie.201607393http://dx.doi.org/10.1002/anie.201607393
Chen W. S.; Ouyang J.; Yi X. Y.; Xu Y.; Niu C. C.; Zhang W. Y.; Wang L. Q.; Sheng J. P.; Deng L.; Liu Y. N.; Guo S. J.Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater., 2018, 30(3), 1703458. doi:10.1002/adma.201703458http://dx.doi.org/10.1002/adma.201703458
Hou J. J.; Wang H.; Ge Z. L.; Zuo T. T.; Chen Q.; Liu X. G.; Mou S.; Fan C. H.; Xie Y.; Wang L. H.Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett., 2020, 20(2), 1447-1454. doi:10.1021/acs.nanolett.9b05218http://dx.doi.org/10.1021/acs.nanolett.9b05218
Hu K.; Xie L.; Zhang Y. D.; Hanyu M.; Yang Z. M.; Nagatsu K.; Suzuki H.; Ouyang J.; Ji X. Y.; Wei J. J.; Xu H.; Farokhzad O. C.; Liang S. H.; Wang L.; Tao W.; Zhang M. R.Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat. Commun., 2020, 11(1), 2778. doi:10.1038/s41467-020-16513-0http://dx.doi.org/10.1038/s41467-020-16513-0
Liu X.; Xiao L. P.; Weng J.; Xu Q. C.; Li W. L.; Zhao C. H.; Xu J.; Zhao Y. L.Regulating the reactivity of black phosphorus via protective chemistry. Sci. Adv., 2020, 6(46), eabb4359. doi:10.1126/sciadv.abb4359http://dx.doi.org/10.1126/sciadv.abb4359
陈欢欢, 张先正. 基于工程化细菌的活性生物材料研究及其医学应用. 高分子学报, 2023, 54(5), 550-563.
Martín R.; Chamignon C.; Mhedbi-Hajri N.; Chain F.; Derrien M.; Escribano-Vázquez U.; Garault P.; Cotillard A.; Pham H. P.; Chervaux C.; Bermúdez-Humarán L. G.; Smokvina T.; Langella P.The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep., 2019, 9, 5398. doi:10.1038/s41598-019-41738-5http://dx.doi.org/10.1038/s41598-019-41738-5
韩子意, 白雪峰, 王钰璋, 陈其文, 张先正. 用于增强结肠癌化疗的肠道菌群葡萄糖醛酸酶响应甘草酸胶束. 高分子学报, 2022, 53(6), 626-635. doi:10.11777/j.issn1000-3304.2022.22021http://dx.doi.org/10.11777/j.issn1000-3304.2022.22021
Jones R. M.; Desai C.; Darby T. M.; Luo L. P.; Wolfarth A. A.; Scharer C. D.; Ardita C. S.; Reedy A. R.; Keebaugh E. S.; Neish A. S.Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep., 2015, 12(8), 1217-1225. doi:10.1016/j.celrep.2015.07.042http://dx.doi.org/10.1016/j.celrep.2015.07.042
田佳, 张伟安. 特定结构的卟啉聚合物的构建及应用. 高分子学报, 2019, 50(7), 653-670. doi:10.11777/j.issn1000-3304.2019.19018http://dx.doi.org/10.11777/j.issn1000-3304.2019.19018
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构