浏览全部资源
扫码关注微信
复旦大学高分子科学系 聚合物分子工程国家重点实验室 上海 200433
[ "陈茂,男,教授,博士生导师. 2002~2011年就读于武汉大学,先后获得学士、博士学位. 2012~2016年在美国麻省理工学院(MIT)从事博士后科研工作,2016年担任MIT研究科学家. 同年加入复旦大学高分子科学系、聚合物分子工程国家重点实验室,青年研究员. 2021年任复旦大学教授. 课题组研究方向主要包括:(1) 探索新型聚合方法,可控合成含氟聚合物;(2) 发展流动化学、机器学习方法用于助力高分子合成;(3) 开发用于新能源领域的含氟高分子材料. 2019年获得Thieme Chemistry Journals Award,2021年获得ACS PMSE Young Investigator Award和Pioneering Investigation by Polymer Chemistry. 目前以通讯作者/第一作者发表论文70余篇,被引用3000余次." ]
纸质出版日期:2024-07-20,
网络出版日期:2024-04-23,
收稿日期:2024-01-17,
录用日期:2024-02-06
移动端阅览
韩善涛, 许梦丽, 陈茂. 可逆失活自由基聚合制备含氟聚合物的研究进展. 高分子学报, 2024, 55(7), 841-855
Han, S. T.; Xu, M. L.; Chen, M. Research progress on preparing fluoropolymers via reversible deactivation radical polymerization. Acta Polymerica Sinica, 2024, 55(7), 841-855
韩善涛, 许梦丽, 陈茂. 可逆失活自由基聚合制备含氟聚合物的研究进展. 高分子学报, 2024, 55(7), 841-855 DOI: 10.11777/j.issn1000-3304.2024.24017.
Han, S. T.; Xu, M. L.; Chen, M. Research progress on preparing fluoropolymers via reversible deactivation radical polymerization. Acta Polymerica Sinica, 2024, 55(7), 841-855 DOI: 10.11777/j.issn1000-3304.2024.24017.
含氟聚合物具有许多优异的理化性能,在化工、新能源、生物医药等领域取得重要应用. 可逆失活自由基聚合反应(RDRP)是实现聚合物精准合成的重要手段. 然而,含氟烯烃单体的RDRP报道相对较少. 本综述对侧链含氟聚合物和主链含氟聚合物的可控合成进展进行介绍,简述了含氟丙烯酸酯、含氟苯乙烯、三氟氯乙烯、四氟乙烯、偏氟乙烯、六氟丙烯、全氟烯基醚等单体的RDRP案例,总结了该领域面临的挑战. 鉴于众多前沿领域对定制化合成含氟聚合物提出了迫切需求,发展含氟聚合物的可控合成方法将有助于拓宽含氟聚合物范围,推动开发高性能含氟聚合物材料.
Fluoropolymers possess many outstanding physical and chemical properties
allowing applications in aerospace
defense
chemicals
new energy
biomedicine
etc
. Reversible deactivation radical polymerization (RDRP) is among the important methods for realizing precise synthesis of polymers. However
compared with the (methyl)acrylate and styrene derivatives
RDRPs of fluorinated monomers are very limited. Recently
a growing number of research reports demonstrated that the precise regulation of polymer structures contributes to improving properties of polymers
promoting the development of high-end materials. Herein
this review focuses on RDRPs of fluorinated monomers
introduces the research advancements of the controlled synthesis of side-chain and main-chain fluorinated polymers
and summarizes the RDRP reports of fluorinated acrylates
fluorinated styrene
chlorotrifluoroethylene
tetrafluoroethylene
vinylidene fluoride
hexafluoropropylene
and perfluoroalkyl vinyl ethers. Given the urgent need for customized synthesis of fluorinated polymers in many frontier fields
the development of controlled synthesis methods for fluorinated polymers will not only contribute to regulating the structural scope of fluorinated polymers but also facilitate the production of high-performance fluorinated polymer materials. This review serves as a valuable resource for researchers working in the field of fluorinated polymers
providing an overview of the current state of the art and briefly illustrating the prospects and challenges for the RDRP of fluorinated monomers.
含氟聚合物含氟烯烃可控失活自由基聚合活性聚合
FluoropolymersFluoroalkenesReversible deactivation radical polymerization (RDRP)Living polymerization
Vitale A.; Bongiovanni R.; Ameduri B. Fluorinated oligomers and polymers in photopolymerization. Chem. Rev., 2015, 115(16), 8835-8866. doi:10.1021/acs.chemrev.5b00120http://dx.doi.org/10.1021/acs.chemrev.5b00120
Ameduri, D. B. Fluoropolymers: the right material for the right applications. Chem, 2018, 24(71), 18830-18841. doi:10.1002/chem.201802708http://dx.doi.org/10.1002/chem.201802708
Mohammad S. A.; Shingdilwar S.; Banerjee S.; Ameduri B. Macromolecular engineering approach for the preparation of new architectures from fluorinated olefins and their applications. Prog. Polym. Sci., 2020, 106, 101255. doi:10.1016/j.progpolymsci.2020.101255http://dx.doi.org/10.1016/j.progpolymsci.2020.101255
Chen K. X.; Guo X.; Chen M. Controlled radical copolymerization toward well-defined fluoropolymers. Angew. Chem. Int. Ed., 2023, 62(48), e202310636. doi:10.1002/anie.202310636http://dx.doi.org/10.1002/anie.202310636
Zhang Z. X.; Chen K. X.; Ameduri B.; Chen M. Fluoropolymer nanoparticles synthesized via reversible-deactivation radical polymerizations and their applications. Chem. Rev., 2023, 123(22), 12431-12470. doi:10.1021/acs.chemrev.3c00350http://dx.doi.org/10.1021/acs.chemrev.3c00350
Desbief S.; Grignard B.; Detrembleur C.; Rioboo R.; Vaillant A.; Seveno D.; Voué M.; de Coninck J.; Jonas A. M.; Jérôme C.; Damman P.; Lazzaroni R. Superhydrophobic aluminum surfaces by deposition of micelles of fluorinated block copolymers. Langmuir, 2010, 26(3), 2057-2067. doi:10.1021/la902565yhttp://dx.doi.org/10.1021/la902565y
Licchelli M.; Malagodi M.; Weththimuni M. L.; Zanchi C. Water-repellent properties of fluoroelastomers on a very porous stone: effect of the application procedure. Prog. Org. Coat., 2013, 76(2-3), 495-503. doi:10.1016/j.porgcoat.2012.11.005http://dx.doi.org/10.1016/j.porgcoat.2012.11.005
Zhang Y. H.; Shi J. H.; Ma B.; Zhou Y. N.; Yong H. Y.; Li J. Z.; Kong X. Y.; Zhou D. Z. Functionalization of polymers for intracellular protein delivery. Prog. Polym. Sci., 2023, 146, 101751. doi:10.1016/j.progpolymsci.2023.101751http://dx.doi.org/10.1016/j.progpolymsci.2023.101751
Lv J.; He B. W.; Yu J. W.; Wang Y. T.; Wang C. P.; Zhang S.; Wang H.; Hu J. J.; Zhang Q.; Cheng Y. Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials, 2018, 182, 167-175. doi:10.1016/j.biomaterials.2018.08.023http://dx.doi.org/10.1016/j.biomaterials.2018.08.023
Zhang X.; Wang S.; Xue C. J.; Xin C. Z.; Lin Y. H.; Shen Y.; Li L. L.; Nan C. W. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater., 2019, 31(11), e1806082. doi:10.1002/adma.201806082http://dx.doi.org/10.1002/adma.201806082
Yu Z. A.; Mackanic D. G.; Michaels W.; Lee M.; Pei A.; Feng D. W.; Zhang Q. H.; Tsao Y.; Amanchukwu C. V.; Yan X. Z.; Wang H. S.; Chen S. C.; Liu K.; Kang J.; Qin J.; Cui Y.; Bao Z. N. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule, 2019, 3(11), 2761-2776. doi:10.1016/j.joule.2019.07.025http://dx.doi.org/10.1016/j.joule.2019.07.025
Han S. T.; Wen P.; Wang H. J.; Zhou Y.; Gu Y.; Zhang L.; Shao-Horn Y.; Lin X. R.; Chen M. Sequencing polymers to enable solid-state lithium batteries. Nat. Mater., 2023, 22(12), 1515-1522. doi:10.1038/s41563-023-01693-zhttp://dx.doi.org/10.1038/s41563-023-01693-z
Ameduri B.; Boutevin B. Update on fluoroelastomers: From perfluoroelastomers to fluorosilicones and fluorophosphazenes. J. Fluor. Chem., 2005, 126(2), 221-229. doi:10.1016/j.jfluchem.2004.11.016http://dx.doi.org/10.1016/j.jfluchem.2004.11.016
Corrigan N.; Jung K.; Moad G.; Hawker C. J.; Matyjaszewski K.; Boyer C. Reversible-deactivation radical polymerization(controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci., 2020, 111, 101311. doi:10.1016/j.progpolymsci.2020.101311http://dx.doi.org/10.1016/j.progpolymsci.2020.101311
Braunecker W. A.; Matyjaszewski K. Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci., 2007, 32(1), 93-146. doi:10.1016/j.progpolymsci.2007.10.001http://dx.doi.org/10.1016/j.progpolymsci.2007.10.001
Moad G.; Rizzardo E.; Thang S. H. Toward living radical polymerization. Acc. Chem. Res., 2008, 41(9), 1133-1142. doi:10.1021/ar800075nhttp://dx.doi.org/10.1021/ar800075n
Chiefari J.; Chong Y.; Ercole F.; Krstina J.; Jeffery J.; Le T. P. T.; Mayadunne R. T. A.; Meijs G. F.; Moad C. L.; Moad G.; Rizzardo E.; Thang S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998, 31(16), 5559-5562. doi:10.1021/ma9804951http://dx.doi.org/10.1021/ma9804951
Nothling M. D.; Fu Q.; Reyhani A.; Allison-Logan S.; Jung K.; Zhu J.; Kamigaito M.; Boyer C.; Qiao G. G. Progress and perspectives beyond traditional RAFT polymerization. Adv. Sci., 2020, 7(20), 2001656. doi:10.1002/advs.202001656http://dx.doi.org/10.1002/advs.202001656
Moad G.; Rizzardo E.; Thang S. H. Living radical polymerization by the RAFT process. Aust. J. Chem., 2005, 58(6), 379. doi:10.1071/ch05072http://dx.doi.org/10.1071/ch05072
Perrier, S. 50th Anniversary perspective: RAFT polymerization—a user guide. Macromolecules, 2017, 50(19), 7433-7447. doi:10.1021/acs.macromol.7b00767http://dx.doi.org/10.1021/acs.macromol.7b00767
Wang J. S.; Matyjaszewski K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc., 1995, 117(20), 5614-5615. doi:10.1021/ja00125a035http://dx.doi.org/10.1021/ja00125a035
Kato M.; Kamigaito M.; Sawamoto M.; Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995, 28(5), 1721-1723. doi:10.1021/ma00109a056http://dx.doi.org/10.1021/ma00109a056
Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules, 2012, 45(10), 4015-4039. doi:10.1021/ma3001719http://dx.doi.org/10.1021/ma3001719
Hawker C. J.; Bosman A. W.; Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev., 2001, 101(12), 3661-3688. doi:10.1021/cr990119uhttp://dx.doi.org/10.1021/cr990119u
Lamontagne H. R.; Lessard B. H. Nitroxide-mediated polymerization: a versatile tool for the engineering of next generation materials. ACS Appl. Polym. Mater., 2020, 2(12), 5327-5344. doi:10.1021/acsapm.0c00888http://dx.doi.org/10.1021/acsapm.0c00888
Boyer C.; Valade D.; Sauguet L.; Ameduri B.; Boutevin B. Iodine transfer polymerization (ITP) of vinylidene fluoride (VDF). Influence of the defect of VDF chaining on the control of ITP. Macromolecules, 2005, 38(25), 10353-10362. doi:10.1021/ma051349fhttp://dx.doi.org/10.1021/ma051349f
Wolpers D. A.; Baffie F.; Verrieux L.; Perrin D. L.; Monteil D. V.; D'Agosto D. F. Iodine-transfer polymerization (ITP) of ethylene and copolymerization with vinyl acetate. Angew. Chem. Int. Ed., 2020, 59(43), 19304-19310. doi:10.1002/anie.202008872http://dx.doi.org/10.1002/anie.202008872
Debuigne A.; Poli R.; Jérôme C.; Jérôme R.; Detrembleur C. Overview of cobalt-mediated radical polymerization: Roots, state of the art and future prospects. Prog. Polym. Sci., 2009, 34(3), 211-239. doi:10.1016/j.progpolymsci.2008.11.003http://dx.doi.org/10.1016/j.progpolymsci.2008.11.003
Sanders D. P. Advances in patterning materials for 193 nm immersion lithography. Chem. Rev., 2010, 110(1), 321-360. doi:10.1021/cr900244nhttp://dx.doi.org/10.1021/cr900244n
Shen L. L.; Guo H. Z.; Zheng J. W.; Wang X.; Yang Y. Q.; An Z. S. RAFT polymerization-induced self-assembly as a strategy for versatile synthesis of semifluorinated liquid-crystalline block copolymer nanoobjects. ACS Macro Lett., 2018, 7(3), 287-292. doi:10.1021/acsmacrolett.8b00070http://dx.doi.org/10.1021/acsmacrolett.8b00070
Betts D. E.; Johnson T.; LeRoux D.; DeSimone J. M. Controlled radical polymerization methods for the synthesis of nonionic surfactants for CO2. ACS Symp. Ser., 1998, 685(2), 418-423.
Xia J. H.; Johnson T.; Gaynor S. G.; Matyjaszewski K.; DeSimone J. Atom transfer radical polymerization in supercritical carbon dioxide. Macromolecules, 1999, 32(15), 4802-4805. doi:10.1021/ma9900380http://dx.doi.org/10.1021/ma9900380
Perrier S.; Jackson S. G.; Haddleton D. M.; Ameduri B.; Boutevin B. Preparation of fluorinated methacrylic copolymers by copper mediated living radical polymerization. Tetrahedron, 2002, 58(20), 4053-4059. doi:10.1016/s0040-4020(02)00274-0http://dx.doi.org/10.1016/s0040-4020(02)00274-0
Perrier S.; Jackson S. G.; Haddleton D. M.; Améduri B.; Boutevin B. Preparation of fluorinated copolymers by copper-mediated living radical polymerization. Macromolecules, 2003, 36(24), 9042-9049. doi:10.1021/ma0259822http://dx.doi.org/10.1021/ma0259822
Ma, Z.; Lacroix-Desmazes, P. Synthesis of hydrophilic/CO2-philic poly(ethylene oxide)-b-poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) block copolymers via controlled/living radical polymerizations and their properties in liquid and supercritical CO2. J. Polym. Sci. Part A Polym. Chem., 2004, 42(10), 2405-2415. doi:10.1002/pola.20117http://dx.doi.org/10.1002/pola.20117
Eberhardt M.; Théato P. RAFT polymerization of pentafluorophenyl methacrylate: preparation of reactive linear diblock copolymers. Macromol. Rapid Commun., 2005, 26(18), 1488-1493. doi:10.1002/marc.200500390http://dx.doi.org/10.1002/marc.200500390
Inoue Y.; Watanabe J.; Takai M.; Yusa S. I.; Ishihara K. Synthesis of sequence-controlled copolymers from extremely polar and apolar monomers by living radical polymerization and their phase-separated structures. J. Polym. Sci. A Polym. Chem., 2005, 43(23), 6073-6083. doi:10.1002/pola.21095http://dx.doi.org/10.1002/pola.21095
Grignard B.; Jérôme C.; Calberg C.; Detrembleur C.; Jérôme R. Controlled synthesis of carboxylic acid end-capped poly(heptadecafluorodecyl acrylate) and copolymers with 2-hydroxyethyl acrylate. J. Polym. Sci. Part A Polym. Chem., 2007, 45(8), 1499-1506. doi:10.1002/pola.21920http://dx.doi.org/10.1002/pola.21920
Koda Y.; Terashima T.; Sawamoto M.; Maynard H. D. Amphiphilic/fluorous random copolymers as a new class of non-cytotoxic polymeric materials for protein conjugation. Polym. Chem., 2015, 6(2), 240-247. doi:10.1039/c4py01346hhttp://dx.doi.org/10.1039/c4py01346h
Gong H. H.; Zhao Y. C.; Shen X. W.; Lin J.; Chen M. Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light. Angew. Chem. Int. Ed., 2018, 57(1), 333-337. doi:10.1002/anie.201711053http://dx.doi.org/10.1002/anie.201711053
Chen M.; Zhong M. J.; Johnson J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev., 2016, 116(17), 10167-10211. doi:10.1021/acs.chemrev.5b00671http://dx.doi.org/10.1021/acs.chemrev.5b00671
Gong H. H.; Gu Y.; Zhao Y. C.; Quan Q. Z.; Han S. T.; Chen M. Precise synthesis of ultra-high-molecular-weight fluoropolymers enabled by chain-transfer-agent differentiation under visible-light irradiation. Angew. Chem. Int. Ed., 2020, 59(2), 919-927. doi:10.1002/anie.201912698http://dx.doi.org/10.1002/anie.201912698
Discekici E. H.; Anastasaki A.; Kaminker R.; Willenbacher J.; Truong N. P.; Fleischmann C.; Oschmann B.; Lunn D. J.; Read de Alaniz J.; Davis T. P.; Bates C. M.; Hawker C. J. Light-mediated atom transfer radical polymerization of semi-fluorinated (meth)acrylates: facile access to functional materials. J. Am. Chem. Soc., 2017, 139(16), 5939-5945. doi:10.1021/jacs.7b01694http://dx.doi.org/10.1021/jacs.7b01694
Dadashi-Silab S.; Matyjaszewski K. Iron-catalyzed atom transfer radical polymerization of semifluorinated methacrylates. ACS Macro Lett., 2019, 8(9), 1110-1114. doi:10.1021/acsmacrolett.9b00579http://dx.doi.org/10.1021/acsmacrolett.9b00579
Ogura Y.; Terashima T.; Sawamoto M. Synthesis of fluorinated gradient copolymers via in situ transesterification with fluoroalcohols in tandem living radical polymerization. Polym. Chem., 2017, 8(15), 2299-2308. doi:10.1039/c7py00073ahttp://dx.doi.org/10.1039/c7py00073a
Ogura Y.; Takenaka M.; Sawamoto M.; Terashima T. Fluorous gradient copolymers via in situ transesterification of a perfluoromethacrylate in tandem living radical polymerization: precision synthesis and physical properties. Macromolecules, 2018, 51(3), 864-871. doi:10.1021/acs.macromol.7b02512http://dx.doi.org/10.1021/acs.macromol.7b02512
Que Y. R.; Liu Y. J.; Tan W.; Feng C.; Shi P.; Li Y. J.; Huang X. Y. Enhancing photodynamic therapy efficacy by using fluorinated nanoplatform. ACS Macro Lett., 2016, 5(2), 168-173. doi:10.1021/acsmacrolett.5b00935http://dx.doi.org/10.1021/acsmacrolett.5b00935
Huo M.; Zhang Y. Y.; Zeng M.; Liu L.; Wei Y.; Yuan J. Y. Morphology evolution of polymeric assemblies regulated with fluoro-containing mesogen in polymerization-induced self-assembly. Macromolecules, 2017, 50(20), 8192-8201. doi:10.1021/acs.macromol.7b01437http://dx.doi.org/10.1021/acs.macromol.7b01437
Lacroix-Desmazes P.; Andre P.; Desimone J. M.; Ruzette A. V.; Boutevin B. Macromolecular surfactants for supercritical carbon dioxide applications: synthesis and characterization of fluorinated block copolymers prepared by nitroxide-mediated radical polymerization. J. Polym. Sci. A Polym. Chem., 2004, 42(14), 3537-3552. doi:10.1002/pola.20193http://dx.doi.org/10.1002/pola.20193
Tan B. H.; Hussain H.; Liu Y.; He C. B.; Davis T. P. Synthesis and self-assembly of brush-type poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly(pentafluorostyrene) amphiphilic diblock copolymers in aqueous solution. Langmuir, 2010, 26(4), 2361-2368. doi:10.1021/la902816bhttp://dx.doi.org/10.1021/la902816b
Lu J.; ten Brummelhuis N.; Weck M. Intramolecular folding of triblock copolymers via quadrupole interactions between poly(styrene) and poly(pentafluorostyrene) blocks. Chem. Commun., 2014, 50(47), 6225-6227. doi:10.1039/c4cc01840khttp://dx.doi.org/10.1039/c4cc01840k
Canning S. L.; Smith G. N.; Armes S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules, 2016, 49(6), 1985-2001. doi:10.1021/acs.macromol.5b02602http://dx.doi.org/10.1021/acs.macromol.5b02602
Penfold N. J. W.; Yeow J.; Boyer C.; Armes S. P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett., 2019, 8(8), 1029-1054. doi:10.1021/acsmacrolett.9b00464http://dx.doi.org/10.1021/acsmacrolett.9b00464
Wang X.; An Z. S. New insights into RAFT dispersion polymerization-induced self-assembly: from monomer library, morphological control, and stability to driving forces. Macromol. Rapid Commun., 2019, 40(2), e1800325. doi:10.1002/marc.201800325http://dx.doi.org/10.1002/marc.201800325
An N. K.; Chen X.; Yuan J. Y. Non-thermally initiated RAFT polymerization-induced self-assembly. Polym. Chem., 2021, 12(22), 3220-3232. doi:10.1039/d1py00216chttp://dx.doi.org/10.1039/d1py00216c
Lv F.; An Z. S.; Wu P. Y. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun., 2019, 10(1), 1397. doi:10.1038/s41467-019-09324-5http://dx.doi.org/10.1038/s41467-019-09324-5
Han S. T.; Gu Y.; Ma M. Y.; Chen M. Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles. Chem. Sci., 2020, 11(38), 10431-10436. doi:10.1039/d0sc04141fhttp://dx.doi.org/10.1039/d0sc04141f
Chai X. P.; Zhou P.; Xia Q.; Shi B. Y.; Wang G. W. Fluorine-containing nano-objects with the same compositions but different segment distributions: synthesis, characterization and comparison. Polym. Chem., 2022, 13(45), 6293-6301. doi:10.1039/d2py01148dhttp://dx.doi.org/10.1039/d2py01148d
An N. K.; Chen X.; Zheng M. X.; Yuan J. Y. Colloidal crystals of monodisperse fluoro-nanoparticles by aqueous polymerization-induced self-assembly. Chem. Commun., 2023, 59(49), 7595-7598. doi:10.1039/d3cc01019hhttp://dx.doi.org/10.1039/d3cc01019h
Quan Q. Z.; Wen H. J.; Han S. T.; Wang Z. T.; Shao Z. Z.; Chen M. Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: facilitating the separation of perfluorinated alkyl substances from water. ACS Appl. Mater. Interfaces, 2020, 12(21), 24319-24327. doi:10.1021/acsami.0c04646http://dx.doi.org/10.1021/acsami.0c04646
Zhou C. D.; Zhang Z. X.; Li W. P.; Chen M. Organocatalyzed photo-controlled synthesis of ultrahigh-molecular-weight fluorinated alternating copolymers. Angew. Chem. Int. Ed., 2024, 63(2), 2314483. doi:10.1002/anie.202314483http://dx.doi.org/10.1002/anie.202314483
Demarteau J.; Améduri B.; Ladmiral V.; Mees M. A.; Hoogenboom R.; Debuigne A.; Detrembleur C. Controlled synthesis of fluorinated copolymers via cobalt-mediated radical copolymerization of perfluorohexylethylene and vinyl acetate. Macromolecules, 2017, 50(10), 3750-3760. doi:10.1021/acs.macromol.7b00578http://dx.doi.org/10.1021/acs.macromol.7b00578
Dolui S.; Kumar D.; Banerjee S.; Ameduri B. Well-defined fluorinated copolymers: current status and future perspectives. Acc. Mater. Res., 2021, 2(4), 242-251. doi:10.1021/accountsmr.1c00015http://dx.doi.org/10.1021/accountsmr.1c00015
Boschet F.; Ameduri B. (Co)polymers of chlorotrifluoroethylene: synthesis, properties, and applications. Chem. Rev., 2014, 114(2), 927-980. doi:10.1021/cr2002933http://dx.doi.org/10.1021/cr2002933
Ameduri B.; Boutevin B. Copolymerization of fluorinated monomers: recent developments and future trends. J. Fluor. Chem., 2000, 104(1), 53-62. doi:10.1016/s0022-1139(00)00227-xhttp://dx.doi.org/10.1016/s0022-1139(00)00227-x
Sauguet L.; Ameduri B.; Boutevin B. Fluorinated copolymers and terpolymers based on vinylidene fluoride and bearing sulfonic acid side-group. J. Polym. Sci. A Polym. Chem., 2007, 45(10), 1814-1834. doi:10.1002/pola.21978http://dx.doi.org/10.1002/pola.21978
Bruno A. Controlled radical (co)polymerization of fluoromonomers. Macromolecules, 2010, 43(24), 10163-10184. doi:10.1021/ma1019297http://dx.doi.org/10.1021/ma1019297
Wang W.; Yan D.; Bratton D.; Howdle S. M.; Wang Q.; Lecomte P. Charge transfer complex inimer: a facile route to dendritic materials. Adv. Mater., 2003, 15(16), 1348-1352. doi:10.1002/adma.200304551http://dx.doi.org/10.1002/adma.200304551
Liu L.; Lu D.; Wang H.; Dong Q. B.; Wang P. C.; Bai R. K. Living/controlled free radical copolymerization of chlorotrifluoroethene and butyl vinyl ether under 60Co γ-ray irradiation in the presence of S-benzyl O-ethyl dithiocarbonate. Chem. Commun., 2011, 47(27), 7839-7841. doi:10.1039/c1cc11749ahttp://dx.doi.org/10.1039/c1cc11749a
Guerre M.; Uchiyama M.; Lopez G.; Améduri B.; Satoh K.; Kamigaito M.; Ladmiral V. Synthesis of PEVE-b-P(CTFE-alt-EVE) block copolymers by sequential cationic and radical RAFT polymerization. Polym. Chem., 2018, 9(3), 352-361. doi:10.1039/c7py01924fhttp://dx.doi.org/10.1039/c7py01924f
Wang P. C.; Wang H.; Dong Q. B.; Bai R. K. Cobalt-mediated radical copolymerization of chlorotrifluoroethylene and vinyl acetate. Polymers, 2019, 11(1), 101. doi:10.3390/polym11010101http://dx.doi.org/10.3390/polym11010101
Jiang K. M.; Han S. T.; Ma M. Y.; Zhang L.; Zhao Y. C.; Chen M. Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: facile access to main-chain fluorinated copolymers. J. Am. Chem. Soc., 2020, 142(15), 7108-7115. doi:10.1021/jacs.0c01016http://dx.doi.org/10.1021/jacs.0c01016
Chen K. X.; Zhou Y.; Han S. T.; Liu Y. L.; Chen M. Main-chain fluoropolymers with alternating sequence control via light-driven reversible-deactivation copolymerization in batch and flow. Angew. Chem., 2022, 134(14), e202116135. doi:10.1002/anie.202116135http://dx.doi.org/10.1002/anie.202116135
Baradie B.; Shoichet M. S. Synthesis of fluorocarbon-vinyl acetate copolymers in supercritical carbon dioxide: insight into bulk properties. Macromolecules, 2002, 35(9), 3569-3575. doi:10.1021/ma010461khttp://dx.doi.org/10.1021/ma010461k
Puts G.; Venner V.; Améduri B.; Crouse P. Conventional and RAFT copolymerization of tetrafluoroethylene with isobutyl vinyl ether. Macromolecules, 2018, 51(17), 6724-6739. doi:10.1021/acs.macromol.8b01286http://dx.doi.org/10.1021/acs.macromol.8b01286
Guerre M.; Campagne B.; Gimello O.; Parra K.; Ameduri B.; Ladmiral V. Deeper insight into the MADIX polymerization of vinylidene fluoride. Macromolecules, 2015, 48(21), 7810-7822. doi:10.1021/acs.macromol.5b01528http://dx.doi.org/10.1021/acs.macromol.5b01528
Valade D.; Boyer C.; Ameduri B.; Boutevin B. Poly(vinylidene fluoride)-b-poly(styrene) block copolymers by iodine transfer polymerization (ITP): synthesis, characterization, and kinetics of, ITP. Macromolecules, 2006, 39(25), 8639-8651. doi:10.1021/ma061392ihttp://dx.doi.org/10.1021/ma061392i
Guerre M.; Schmidt J.; Talmon Y.; Améduri B.; Ladmiral V. An amphiphilic poly(vinylidene fluoride)-b-poly(vinyl alcohol) block copolymer: synthesis and self-assembly in water. Polym. Chem., 2017, 8(7), 1125-1128. doi:10.1039/c6py02137ahttp://dx.doi.org/10.1039/c6py02137a
Banerjee S.; Ladmiral V.; Debuigne A.; Detrembleur C.; Poli R.; Améduri B. Organometallic-mediated radical polymerization of vinylidene fluoride. Angew. Chem. Int. Ed., 2018, 57(11), 2934-2937. doi:10.1002/anie.201712347http://dx.doi.org/10.1002/anie.201712347
Zhao Y. C.; Chen Y. F.; Zhou H. Y.; Zhou Y.; Chen K. X.; Gu Y.; Chen M. Controlled radical copolymerization of fluoroalkenes by using light-driven redox-relay catalysis. Nat. Synth., 2023, 2, 653-662. doi:10.1038/s44160-023-00284-9http://dx.doi.org/10.1038/s44160-023-00284-9
Otazaghine B.; Sauguet L.; Boucher M.; Ameduri B. Radical copolymerization of vinylidene fluoride with perfluoroalkylvinyl ethers. Eur. Polym. J., 2005, 41(8), 1747-1756. doi:10.1016/j.eurpolymj.2005.02.015http://dx.doi.org/10.1016/j.eurpolymj.2005.02.015
Souzy R.; Ameduri B. Functional fluoropolymers for fuel cell membranes. Prog. Polym. Sci., 2005, 30(6), 644-687. doi:10.1016/j.progpolymsci.2005.03.004http://dx.doi.org/10.1016/j.progpolymsci.2005.03.004
Boyer C.; Ameduri B.; Hung M. H. Telechelic diiodopoly(VDF-co-PMVE) copolymers by iodine transfer copolymerization of vinylidene fluoride (VDF) with perfluoromethyl vinyl ether (PMVE). Macromolecules, 2010, 43(8), 3652-3663. doi:10.1021/ma100207hhttp://dx.doi.org/10.1021/ma100207h
Quan Q. Z.; Zhao Y. C.; Chen K. X.; Zhou H. Y.; Zhou C. D.; Chen M. Organocatalyzed controlled copolymerization of perfluorinated vinyl ethers and unconjugated monomers driven by light. ACS Catal., 2022, 12(12), 7269-7277. doi:10.1021/acscatal.2c01640http://dx.doi.org/10.1021/acscatal.2c01640
Quan Q. Z.; Ma M. Y.; Wang Z. T.; Gu Y.; Chen M. Visible-light-enabled organocatalyzed controlled alternating terpolymerization of perfluorinated vinyl ethers. Angew. Chem. Int. Ed., 2021, 60(37), 20443-20451. doi:10.1002/anie.202107066http://dx.doi.org/10.1002/anie.202107066
Han S. T.; Wu B. F.; Wang H. J.; Wen P.; Zhang L.; Lin X. R.; Chen M. Designing F/P hybrid polymer as ultrastable cationic shielding interphase for high-performance lithium metal batteries. Angew. Chem. Int. Ed., 2023, 62(37), 2308724. doi:10.1002/anie.202308724http://dx.doi.org/10.1002/anie.202308724
0
浏览量
326
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构