浏览全部资源
扫码关注微信
复旦大学高分子科学系 聚合物分子工程国家重点实验室 上海 200433
[ "李剑锋,男,1980年生. 1999~2010年于复旦大学高分子科学系获得学士、硕士、博士学位;2007~2009年在加拿大McMaster大学公派出国留学生;2012~2013年复旦大学高分子系讲师,2013~2019年复旦大学高分子系副教授. 2019年至今,复旦大学高分子系教授,聚合物分子工程国家重点实验室副主任. 主要从事高分子缠结理论,机器学习在高分子物理中的应用,非平衡热力学方法,大脑理论模型构建等方面研究." ]
纸质出版日期:2024-07-20,
网络出版日期:2024-04-12,
收稿日期:2024-01-29,
录用日期:2024-03-15
移动端阅览
熊俊棚, 李昶皓, 李剑锋. 软物质中场论模拟方法的应用及展望. 高分子学报, 2024, 55(7), 856-871
Xiong, J. P.; Li, C. H.; Li, J. F. Application and perspectives of simulation methods based on field theory in soft matter. Acta Polymerica Sinica, 2024, 55(7), 856-871
熊俊棚, 李昶皓, 李剑锋. 软物质中场论模拟方法的应用及展望. 高分子学报, 2024, 55(7), 856-871 DOI: 10.11777/j.issn1000-3304.2024.24035.
Xiong, J. P.; Li, C. H.; Li, J. F. Application and perspectives of simulation methods based on field theory in soft matter. Acta Polymerica Sinica, 2024, 55(7), 856-871 DOI: 10.11777/j.issn1000-3304.2024.24035.
软物质科学是物理、化学和材料科学领域的重要分支. 但软物质系统因其多尺度结构和丰富的动态行为,给研究带来了巨大挑战.而场论模拟方法在应对这些挑战中显示出独特优势,其通过引入连续的场变量,为描述和处理软物质系统中的复杂相互作用提供了一个更加高效和宏观的视角. 本文首先介绍了场论模拟方法的基本原理并阐述了它们在软物质物理上的应用,如蛋白质的HP模型结构预测、高分子链的静态拓扑缠结、化学反应或光反应驱动微观相分离等,接着探讨了深度学习等现代计算技术在软物质研究中的应用. 最后展望了软物质研究领域的未来发展趋势,指出场论方法在软物质物理研究领域仍具有巨大优势.
Soft matter science is an important branch in the fields of physics
chemistry
and material science. However
the complexity of soft matter systems
especially their multi-scale structure
s and rich dynamic behaviors
poses significant challenges to researchers. To address these challenges
simulation methods based on field theory demonstrate unique advantages in simulation techniques. By introducing continuous field variables
they provide a more efficient and macroscopic perspective for describing and handling complex interactions in soft matter systems. This article first introduces the basic principles of polymer field theory and elaborates on their applications in soft matter physics
such as the structure prediction of protein HP models
the static topological entanglement problems of polymer chains
chemical reaction/light induced microphase separation
etc
. It then explores the application of modern computational technologies like deep learning in soft matter research
and finally looks forward to the future research trends and developments in the field of soft matter
pointing out that field theory remains a powerful tool for soft matter study.
软物质场论模拟自洽场理论深度学习
Soft matterSimulation methods based on field theorySelf-consistent field theoryDeep learning
Jones, R. A. L. Soft Condensed Matter. Oxford, UK: Oxford University Press, 2002, 1-4. doi:10.1093/gmo/9781561592630.article.20622http://dx.doi.org/10.1093/gmo/9781561592630.article.20622
de Gennes P. G. Soft matter. Science, 1992, 256(5056), 495-497. doi:10.1126/science.256.5056.495http://dx.doi.org/10.1126/science.256.5056.495
Fredrickson G. H. The Equilibrium Theory of Inhomogeneous Polymers. Oxford: Oxford University Press, 2006, 203-280. doi:10.1093/acprof:oso/9780198567295.003.0005http://dx.doi.org/10.1093/acprof:oso/9780198567295.003.0005
de Gennes P. G. Scaling Concepts In Polymer Physics. Ithaca, N.Y.: Cornell University Press, 1979, 245-265.
Richters D.; Kühne T. D. Self-consistent field theory based molecular dynamics with linear system-size scaling. J. Chem. Phys., 2014, 140(13), 134109. doi:10.1063/1.4869865http://dx.doi.org/10.1063/1.4869865
Müller M.; MacDowell L. G. Interface and surface properties of short polymers in solution: Monte Carlo simulations and self-consistent field theory. Macromolecules, 2000, 33(10), 3902-3923. doi:10.1021/ma991796thttp://dx.doi.org/10.1021/ma991796t
Reister E.; Müller M.; Binder K. Spinodal decomposition in a binary polymer mixture: dynamic self-consistent-field theory and Monte Carlo simulations. Phys. Rev. E, 2001, 64(4), 041804. doi:10.1103/physreve.64.041804http://dx.doi.org/10.1103/physreve.64.041804
Schmid F.; Mueller M. Quantitative comparison of self-consistent field theories for polymers near interfaces with monte Carlo simulations. Macromolecules, 1995, 28(25), 8639-8645. doi:10.1021/ma00129a024http://dx.doi.org/10.1021/ma00129a024
Cosgrove T.; Heath T.; van Lent B.; Leermakers F.; Scheutjens J. Configuration of terminally attached chains at the solid/solvent interface: Self-consistent field theory and a Monte Carlo model. Macromolecules, 1987, 20(7), 1692-1696. doi:10.1021/ma00173a041http://dx.doi.org/10.1021/ma00173a041
Henderson D. Fundamentals of Inhomogeneous Fluids. RatonBoca, FL: CRC Press, 1992, 85-177.
Evans R.; Oettel M.; Roth R.; Kahl G. New developments in classical density functional theory. J. Phys. Condens. Matter, 2016, 28(24), 240401. doi:10.1088/0953-8984/28/24/240401http://dx.doi.org/10.1088/0953-8984/28/24/240401
Wu J. Z. Density functional theory for chemical engineering: from capillarity to soft materials. AlChE. J., 2006, 52(3), 1169-1193. doi:10.1002/aic.10713http://dx.doi.org/10.1002/aic.10713
Edwards S. F. The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc., 1965, 85(4), 613-624. doi:10.1088/0370-1328/85/4/301http://dx.doi.org/10.1088/0370-1328/85/4/301
Edwards S. F. The theory of polymer solutions at intermediate concentration. Proc. Phys. Soc., 1966, 88(2), 265-280. doi:10.1088/0370-1328/88/2/301http://dx.doi.org/10.1088/0370-1328/88/2/301
Matsen M. W.; Schick M. Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett., 1994, 72(16), 2660-2663. doi:10.1103/physrevlett.72.2660http://dx.doi.org/10.1103/physrevlett.72.2660
杨玉良, 邱枫, 唐萍, 张红东. 高分子体系的自洽场理论方法及其应用. 中国科学(B辑 化学), 2006, (1), 1-22.
Duan H.; Li J. F.; Zhang H. D.; Qiu F. A new possibility of self-consistent field theory: obtaining native states of proteins. Polymer, 2018, 134, 75-84. doi:10.1016/j.polymer.2017.11.039http://dx.doi.org/10.1016/j.polymer.2017.11.039
Miller D. W.; Dill K. A. A statistical mechanical model for hydrogen exchange in globular proteins. Protein Sci., 1995, 4(9), 1860-1873. doi:10.1002/pro.5560040921http://dx.doi.org/10.1002/pro.5560040921
Elber R.; Karplus M. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. Chem. Soc., 1990, 112(25), 9161-9175. doi:10.1021/ja00181a020http://dx.doi.org/10.1021/ja00181a020
Noolandi J.; Davison T. S.; Volkel A. R.; Nie X.; Kay C.; Arrowsmith C. H. A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor P53. Proc. Natl. Acad. Sci. USA, 2000, 97(18), 9955-9960. doi:10.1073/pnas.160075697http://dx.doi.org/10.1073/pnas.160075697
Völkel A. R.; Noolandi J. Structural stability of oligomeric proteins: a mean-field theoretical approach. J. Comput. Aided Mater. Des., 1997, 4(1), 1-8. doi:10.1023/a:1008676700713http://dx.doi.org/10.1023/a:1008676700713
Roitberg A.; Elber R. Modeling side chains in peptides and proteins: application of the locally enhanced sampling and the simulated annealing methods to find minimum energy conformations. J. Chem. Phys., 1991, 95(12), 9277-9287. doi:10.1063/1.461157http://dx.doi.org/10.1063/1.461157
Unger R.; Moult J. Genetic algorithms for protein folding simulations. J. Mol. Biol., 1993, 231(1), 75-81. doi:10.1006/jmbi.1993.1258http://dx.doi.org/10.1006/jmbi.1993.1258
Jiang T. Z.; Cui Q. H.; Shi G. H.; Ma S. D. Protein folding simulations of the hydrophobic-hydrophilic model by combining tabu search with genetic algorithms. J. Chem. Phys., 2003, 119(8), 4592-4596. doi:10.1063/1.1592796http://dx.doi.org/10.1063/1.1592796
Spitzer F. Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc., 1958, 87(1), 187-197. doi:10.1090/s0002-9947-1958-0104296-5http://dx.doi.org/10.1090/s0002-9947-1958-0104296-5
Edwards S. F. Statistical mechanics with topological constraints. Proc. Phys. Soc., 1967, 91(3), 513-519. doi:10.1088/0370-1328/91/3/301http://dx.doi.org/10.1088/0370-1328/91/3/301
Prager S.; Frisch H. L. Statistical mechanics of a simple entanglement. J. Chem. Phys., 1967, 46(4), 1475-1483. doi:10.1063/1.1840877http://dx.doi.org/10.1063/1.1840877
Rudnick J.; Hu Y. Winding angle of a self-avoiding random walk. Phys. Rev. Lett., 1988, 60(8), 712-715. doi:10.1103/physrevlett.60.712http://dx.doi.org/10.1103/physrevlett.60.712
Grosberg A.; Frisch H. Winding angle distribution for planar random walk, polymer ring entangled with an obstacle, and all that: Spitzer-Edwards-Prager-Frisch model revisited. J. Phys. A: Math. Gen., 2003, 36(34), 8955-8981. doi:10.1088/0305-4470/36/34/303http://dx.doi.org/10.1088/0305-4470/36/34/303
Khokhlov A. R.; Nechaev S. K. Polymer chain in an array of obstacles. Phys. Lett. A, 1985, 112(3-4), 156-160. doi:10.1016/0375-9601(85)90678-4http://dx.doi.org/10.1016/0375-9601(85)90678-4
Nechaev S.; Voituriez R. Random walks on three-strand braids and on related hyperbolic groups. J. Phys. A: Math. Gen., 2003, 36(1), 43-66. doi:10.1088/0305-4470/36/1/304http://dx.doi.org/10.1088/0305-4470/36/1/304
Gong H.; Li J. F.; Zhang H. D.; Shi A. C. Force-extension curve of an entangled polymer chain: a superspace approach. Chinese J. Polym. Sci., 2021, 39(11), 1345-1350. doi:10.1007/s10118-021-2623-yhttp://dx.doi.org/10.1007/s10118-021-2623-y
Zhang Q. H.; Li J. F. Force-extension curve of a polymer chain entangled with a static ring-shaped obstacle. Polymers, 2022, 14(21), 4613. doi:10.3390/polym14214613http://dx.doi.org/10.3390/polym14214613
Prigogine I.; Lefever R. Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys., 1968, 48(4), 1695-1700. doi:10.1063/1.1668896http://dx.doi.org/10.1063/1.1668896
Rotermund H. H.; Jakubith S.; von Oertzen A.; Ertl G. Solitons in a surface reaction. Phys. Rev. Lett., 1991, 66(23), 3083-3086. doi:10.1103/physrevlett.66.3083http://dx.doi.org/10.1103/physrevlett.66.3083
Grindrod P. Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations. Oxford: Oxford University Press, 1991.
Ouyang Q.; Swinney H. L. Transition from a uniform state to hexagonal and striped Turing patterns. Nature, 1991, 352, 610-612. doi:10.1038/352610a0http://dx.doi.org/10.1038/352610a0
Sun R. Q.; Li J. F.; Zhang H. D.; Yang Y. L. Kinetic pattern formation with intermolecular interactions: a modified brusselator model. Chin. J. Polym. Sci., 2021, 39(12), 1673-1679. doi:10.1007/s10118-021-2600-5http://dx.doi.org/10.1007/s10118-021-2600-5
Wang H.; Park M.; Dong R. Y.; Kim J.; Cho Y. K.; Tlusty T.; Granick S. Boosted molecular mobility during common chemical reactions. Science, 2020, 369(6503), 537-541. doi:10.1126/science.aba8425http://dx.doi.org/10.1126/science.aba8425
Liu C. M.; Kubo K. R.; Wang E. D.; Han K. S.; Yang F.; Chen G. Q.; Escobedo F. A.; Coates G. W.; Chen P. Single polymer growth dynamics. Science, 2017, 358(6361), 352-355. doi:10.1126/science.aan6837http://dx.doi.org/10.1126/science.aan6837
Doi M. Second quantization representation for classical many-particle system. J. Phys. A: Math. Gen., 1976, 9(9), 1465-1477. doi:10.1088/0305-4470/9/9/008http://dx.doi.org/10.1088/0305-4470/9/9/008
Doi M. Stochastic theory of diffusion-controlled reaction. J. Phys. A: Math. Gen., 1976, 9(9), 1479-1495. doi:10.1088/0305-4470/9/9/009http://dx.doi.org/10.1088/0305-4470/9/9/009
Peliti L. Path integral approach to birth-death processes on a lattice. J. Phys. France, 1985, 46(9), 1469-1483. doi:10.1051/jphys:019850046090146900http://dx.doi.org/10.1051/jphys:019850046090146900
Smoluchowski M. V. Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Z. Für Phys. Chem., 1918, 92U(1), 129-168. doi:10.1515/zpch-1918-9209http://dx.doi.org/10.1515/zpch-1918-9209
Keizer J. Nonequilibrium statistical thermodynamics and the effect of diffusion on chemical reaction rates. J. Phys. Chem., 1982, 86(26), 5052-5067. doi:10.1021/j100223a004http://dx.doi.org/10.1021/j100223a004
Gardiner C. W.; McNeil K. J.; Walls D. F.; Matheson I. S. Correlations in stochastic theories of chemical reactions. J. Stat. Phys., 1976, 14(4), 307-331. doi:10.1007/bf01030197http://dx.doi.org/10.1007/bf01030197
Erban R.; Chapman J.; Maini P. A practical guide to stochastic simulations of reaction-diffusion processes. arXiv preprint, 2007, arXiv.0704.1908.
Isaacson S. A.; Peskin C. S. Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J. Sci. Comput., 2006, 28(1), 47-74. doi:10.1137/040605060http://dx.doi.org/10.1137/040605060
Isaacson S. A. A convergent reaction-diffusion master equation. J. Chem. Phys., 2013, 139(5), 054101. doi:10.1063/1.4816377http://dx.doi.org/10.1063/1.4816377
Li C. H.; Li J. F.; Yang Y. L. A Feynman path integral-like method for deriving reaction-diffusion equations. Polymers, 2022, 14(23), 5156. doi:10.3390/polym14235156http://dx.doi.org/10.3390/polym14235156
Agudo-Canalejo J.; Schultz S. W.; Chino H.; Migliano S. M.; Saito C.; Koyama-Honda I.; Stenmark H.; Brech A.; May A. I.; Mizushima N.; Knorr R. L. Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature, 2021, 591, 142-146. doi:10.1038/s41586-020-2992-3http://dx.doi.org/10.1038/s41586-020-2992-3
Wheeler J. R.; Matheny T.; Jain S.; Abrisch R.; Parker R. Distinct stages in stress granule assembly and disassembly. eLife, 2016, 5, e18413. doi:10.7554/elife.18413http://dx.doi.org/10.7554/elife.18413
Riback J. A.; Zhu L.; Ferrolino M. C.; Tolbert M.; Mitrea D. M.; Sanders D. W.; Wei M. T.; Kriwacki R. W.; Brangwynne C. P. Composition-dependent thermodynamics of intracellular phase separation. Nature, 2020, 581(7807), 209-214. doi:10.1038/s41586-020-2256-2http://dx.doi.org/10.1038/s41586-020-2256-2
Carati D.; Lefever R. Chemical freezing of phase separation in immiscible binary mixtures. Phys. Rev. E, 1997, 56(3), 3127-3136. doi:10.1103/physreve.56.3127http://dx.doi.org/10.1103/physreve.56.3127
Tyson J. J.; Fife P. C. Target patterns in a realistic model of the Belousov-Zhabotinskii reaction. J. Chem. Phys., 1980, 73(5), 2224-2237. doi:10.1063/1.440418http://dx.doi.org/10.1063/1.440418
Li C. H.; Li J. F.; Zhang H. D.; Yang Y. L. A systematic study on immiscible binary systems undergoing thermal/photo reversible chemical reactions. Phys. Chem. Chem. Phys., 2023, 25(3), 1642-1648. doi:10.1039/d2cp04526ehttp://dx.doi.org/10.1039/d2cp04526e
Li C. H.; Li J. F.; Yang Y. L. First-principle derivation of single-photon entropy and Maxwell-Jüttner velocity distribution. Entropy, 2022, 24(11), 1609. doi:10.3390/e24111609http://dx.doi.org/10.3390/e24111609
McCulloch W. S.; Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 1943, 5(4), 115-133. doi:10.1007/bf02478259http://dx.doi.org/10.1007/bf02478259
Attneave F.; M, B.; Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory. New York: Psychology Press, 2005.
Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev., 1958, 65(6), 386-408. doi:10.1037/h0042519http://dx.doi.org/10.1037/h0042519
Zhao Z. Q.; Zheng P.; Xu S. T.; Wu X. D. Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst., 2019, 30(11), 3212-3232. doi:10.1109/tnnls.2018.2876865http://dx.doi.org/10.1109/tnnls.2018.2876865
Vaswani A.; Shazeer N.; Parmar N.; Uszkoreit J.; Jones L.; Gomez A. N.; Kaiser L.; Polosukhin I. Attention Is all you need. Adv. Neural Inf. Process. Syst., 2017, 30.
Li J. F.; Zhang H. D.; Chen J. Z. Y. Structural prediction and inverse design by a strongly correlated neural network. Phys. Rev. Lett., 2019, 123(10), 108002. doi:10.1103/physrevlett.123.108002http://dx.doi.org/10.1103/physrevlett.123.108002
Sali A.; Shakhnovich E.; Karplus M. How does a protein fold? Nature, 1994, 369(6477), 248-251. doi:10.1038/369248a0http://dx.doi.org/10.1038/369248a0
Wüst T.; Landau D. P. Versatile approach to access the low temperature thermodynamics of lattice polymers and proteins. Phys. Rev. Lett., 2009, 102(17), 178101. doi:10.1103/physrevlett.102.178101http://dx.doi.org/10.1103/physrevlett.102.178101
Yue K.; Dill K. A. Forces of tertiary structural organization in globular proteins. Proc. Natl. Acad. Sci. USA, 1995, 92(1), 146-150. doi:10.1073/pnas.92.1.146http://dx.doi.org/10.1073/pnas.92.1.146
Wang T. Y.; Li J. F.; Zhang H. D.; Chen J. Z. Y. Designs to improve capability of neural networks to make structural predictions. Chinese J. Polym. Sci., 2023, 41(9), 1477-1485. doi:10.1007/s10118-023-2910-xhttp://dx.doi.org/10.1007/s10118-023-2910-x
Wang S.; Peng J.; Ma J. Z.; Xu J. B. Protein secondary structure prediction using deep convolutional neural fields. Sci. Rep., 2016, 6, 18962. doi:10.1038/srep18962http://dx.doi.org/10.1038/srep18962
Lafferty J.; McCallum A.; Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. International Conference on Machine Learning, International Conference on Machine Learning, 2001. doi:10.1145/1015330.1015422http://dx.doi.org/10.1145/1015330.1015422
Niu Z.; Zhong G.; Yu H. A review on the attention mechanism of deep learning. Neurocomputing, 2021, 452, 48-62. doi:10.1016/j.neucom.2021.03.091http://dx.doi.org/10.1016/j.neucom.2021.03.091
Hochreiter S.; Schmidhuber, J. Long short-term memory. Neural Comput., 1997, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735http://dx.doi.org/10.1162/neco.1997.9.8.1735
Devlin J.; Chang M. W.; Lee K.; Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv Preprint, 2018, arXiv.1810.04805. doi:10.48550/arXiv.1810.04805http://dx.doi.org/10.48550/arXiv.1810.04805
He K. M.; Zhang X. Y.; Ren S. Q.; Sun, J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016, 770-778. doi:10.1109/cvpr.2016.90http://dx.doi.org/10.1109/cvpr.2016.90
Doerk G. S.; Liu C. C.; Cheng J. Y.; Rettner C. T.; Pitera J. W.; Krupp L. E.; Topuria T.; Arellano N.; Sanders D. P. Pattern placement accuracy in block copolymer directed self-assembly based on chemical epitaxy. ACS Nano, 2013, 7(1), 276-285. doi:10.1021/nn303974jhttp://dx.doi.org/10.1021/nn303974j
Seino Y.; Yonemitsu H.; Sato H.; Kanno M.; Kato H.; Kobayashi K.; Kawanishi A.; Azuma T.; Muramatsu M.; Nagahara S.; Kitano T.; Toshima T. Contact hole shrink process using directed self-assembly. Proc. Altern. Lithogr. Technol. IV, 2012, 83230Y. doi:10.1117/12.915652http://dx.doi.org/10.1117/12.915652
Yi H.; Bao X. Y.; Zhang J.; Bencher C.; Chang L. W.; Chen X. Y.; Tiberio R.; Conway J.; Dai H. X.; Chen Y. M.; Mitra S.; Philip Wong H. S. Flexible control of block copolymer directed self-assembly using small, topographical templates: potential lithography solution for integrated circuit contact hole patterning. Adv. Mater., 2012, 24(23), 3107-3114, 3082. doi:10.1002/adma.201290134http://dx.doi.org/10.1002/adma.201290134
Ruiz R.; Dobisz E.; Albrecht T. R. Rectangular patterns using block copolymer directed assembly for high bit aspect ratio patterned media. ACS Nano, 2011, 5(1), 79-84. doi:10.1021/nn101561phttp://dx.doi.org/10.1021/nn101561p
Hinsberg W.; Cheng J.; Kim H. C.; Sanders D. P. Self-assembling materials for lithographic patterning: overview, status, and moving forward. Proc. Altern. Lithogr. Technol. II, 2010, 76370G. doi:10.1117/12.852230http://dx.doi.org/10.1117/12.852230
Detcheverry F. A.; Nealey P. F.; de Pablo J. J. Directed assembly of a cylinder-forming diblock copolymer: topographic and chemical patterns. Macromolecules, 2010, 43(15), 6495-6504. doi:10.1021/ma1006733http://dx.doi.org/10.1021/ma1006733
Ruiz R.; Kang H. M.; Detcheverry F. A.; Dobisz E.; Kercher D. S.; Albrecht T. R.; de Pablo J. J.; Nealey P. F. Density multiplication and improved lithography by directed block copolymer assembly. Science, 2008, 321(5891), 936-939. doi:10.1126/science.1157626http://dx.doi.org/10.1126/science.1157626
Ginige G.; Song Y.; Olsen B. C.; Luber E. J.; Yavuz C. T.; Buriak J. M. Solvent vapor annealing, defect analysis, and optimization of self-assembly of block copolymers using machine learning approaches. ACS Appl. Mater. Interfaces, 2021, 13(24), 28639-28649. doi:10.1021/acsami.1c05056http://dx.doi.org/10.1021/acsami.1c05056
Ginzburg V. V.; Weinhold J. D.; Trefonas P. Computational modeling of block-copolymer directed self-assembly. J. Polym. Sci. Part B Polym. Phys., 2015, 53(2), 90-95. doi:10.1002/polb.23365http://dx.doi.org/10.1002/polb.23365
Liu Z. H.; Liu Y. X.; Yang Y. L.; Li J. F. Template design for complex block copolymer patterns using a machine learning method. ACS Appl. Mater. Interfaces, 2023, 15(25), 31049-31056. doi:10.1021/acsami.3c05018http://dx.doi.org/10.1021/acsami.3c05018
0
浏览量
341
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构