Compared with conventional reverse osmosis membrane (RO) materials
cellulose acetate (CA) reverse osmosis membranes have attracted considerable attention due to their unique chlorine resistance. However
β
-glucose units in the cellulose backbone of CA molecule are vulnerable to erosion and degradation by aquatic microorganisms. To improve the antibacterial performance of cellulose triacetate reverse osmosis membrane
cellulose triacetate/chitosan blend reverse osmosis membrane (CTA/CS-RO) were designed and prepared with CS as the antibacterial agent by phase inversion. The homogeneous CTA solutions containning 20 g·L
−1
CS in formic acid were casted with casting knife of 250 μm thickness and the asymmetrical CTA/CS-RO membranes were obtained after solvent evaporation
immersion precipitation process. The mass fractions of CS to CTA were selected to be 0.25%
0.50%. 0.75%
1.00% and 1.25%
respectively. The structure and performances of the obtained CTA/CS-RO membranes were characterized by various methods such as Fourier transform infrared spectroscopy
X-ray photoelectron spectroscopy
scanning electron microscopy
water contact angle and X-ray diffraction spectroscopy. The red shift of the characteristic peak of C―O―C in FTIR spectra indicated the presence of hydrogen bonding between CTA and CS. The characteristic peak of N1s in XPS spectra indicated the migration of CS to the membrane surface during phase inversion. The SEM images showed that membrane thickness decreased with increasing CS concentration. The addition of CS improved the hydrophilicity
water flux and mechanical properties of CTA/CS-ROs. When the mass fraction of CS to CTA was within 0.75%−1.00%
CTA/CS-ROs showed high salt rejection (
R
>
90%) without siginificant changes in elongation at break and crystallinity. The dynamic contact antibacterial test results indicated that CTA/CS-ROs showed inhibitory effect on
E. coli
and
S. aureus
which was improved by increasing the content of CS. When the mass fraction of CS to CTA was within 0.75% − 1.00%
CTA/CS-ROs possessed higher inhibition rate against
E. coli
(65% − 72.5%) than
S. aureus
(16% − 51%) due to the electrostatic attraction between the positive CS and gram negative
Lee K P, Arnot T C, Mattia D . J Membr Sci , 2011 . 370 1 - 22 . DOI:10.1016/j.memsci.2010.12.036http://doi.org/10.1016/j.memsci.2010.12.036 .
Waheed S, Ahmad A, Khan S M, Gul S E, Jamil T, Islam A, Hussain T . Desalination , 2014 . 351 59 - 69 . DOI:10.1016/j.desal.2014.07.019http://doi.org/10.1016/j.desal.2014.07.019 .
Sabad E G, Waheed S, Ahmad A, Khan S M, Hussain M, Jamil T, Zuber M . J Taiwan Inst Chem Eng , 2015 . 57 129 - 138 . DOI:10.1016/j.jtice.2015.05.024http://doi.org/10.1016/j.jtice.2015.05.024 .
Matin A, Khan Z, Zaidi S M J, Boyce M C . Desalination , 2011 . 281 1 - 16 . DOI:10.1016/j.desal.2011.06.063http://doi.org/10.1016/j.desal.2011.06.063 .
Idris A, Ismail A F, Noorhayati M, Shilton S J . J Membr Sci , 2003 . 213 45 - 54 . DOI:10.1016/S0376-7388(02)00511-2http://doi.org/10.1016/S0376-7388(02)00511-2 .
Loeb S, Sourirajan S. Sea Water Demineralization by Means of an Osmotic Membrane. Washington, D.C.: American Chemical Society, 1963. 117-132
Li N N, Fane A G, Ho W S W, Matsuura T. Advanced Memebrane Technology and Applications. Hoboken: John Wiley & Sons, Inc., 2008. 21-43
Guibal E, Cambe S, Bayle S, Taulemesse J M, Vincent T . J Colloid Interf Sci , 2013 . 393 411 - 420 . DOI:10.1016/j.jcis.2012.10.057http://doi.org/10.1016/j.jcis.2012.10.057 .
Liu C, Bai R . J Membr Sci , 2006 . 284 313 - 322 . DOI:10.1016/j.memsci.2006.07.045http://doi.org/10.1016/j.memsci.2006.07.045 .
Alves N M, Mano J F . Int J Biol Macromol , 2008 . 43 401 - 414 . DOI:10.1016/j.ijbiomac.2008.09.007http://doi.org/10.1016/j.ijbiomac.2008.09.007 .
Mulder Marcel, Li Lin(李琳). Basic Principles of Membrane Technology, 2nd ed (膜技术基本原理(第2版)). Beijing(北京): Tsinghua University Press(清华大学出版社), 1999. 193-195
Xu Youyi(徐又一), Xu Zhikang(徐志康). Polymer Membrane Materials(高分子膜材料). Beijing(北京): Chemical Industry Press(化学工业出版社), 2005. 6-300
Vinodhini P A, Sangeetha K, TGomathi, Sudha P N, Venkatesan J, Anil S. Int J Biol Macromol, 2017, DOI: 10.1016/j.ijbiomac.2017.03.122
Nara S, T. Komiya T. Starch-Stärke, 1983, 35: 407-410
Celebi H, Kurt A . Carbohydr Polym , 2015 . 133 284 - 293 . DOI:10.1016/j.carbpol.2015.07.007http://doi.org/10.1016/j.carbpol.2015.07.007 .
Geng C Z, Hu X, Yang G H, Zhang Q, Chen F, Fu Q . Chinese J Polym Sci , 2015 . 33 61 - 69 . DOI:10.1007/s10118-015-1558-6http://doi.org/10.1007/s10118-015-1558-6 .
Ionita M, Crica L E, Voicu S I, Pandele A M, Iovu H . Polym Adv Technol , 2016 . 27 350 - 357 . DOI:10.1002/pat.v27.3http://doi.org/10.1002/pat.v27.3 .
Saljoughi E, Sadrzadeh M, Mohammadi T . J Membr Sci , 2009 . 326 627 - 634 . DOI:10.1016/j.memsci.2008.10.044http://doi.org/10.1016/j.memsci.2008.10.044 .
Morsy A, Ebrahim S, Kenawy E R, Abdel-Fattah T, Kandil S . Water Sci Technol: Water Supply , 2016 . 16 1046 - 1056 . DOI:10.2166/ws.2016.025http://doi.org/10.2166/ws.2016.025 .
Ghaee A, Shariaty-Niassar M, Barzin J, Matsuura T, Fauzi Ismail A . Desalin Water Treat , 2015 . 57 14453 - 14460.
Wu Qingyun(吴青芸), Pan Yehan(潘叶寒), Jin Weizhong(金伟中), Xu Jiamin(徐佳敏), Lao Kankan(劳侃侃), Gu Lin(顾林). Acta Polymerica Sinica(高分子学报), 2017, (5): 132-138
Ding Mingyu(丁明玉). Modern Separation Methods and Techniques(现代分离方法与技术). Beijing(北京): Chemical Industry Press(化学工业出版社), 2012. 36-42
Song Jianhui(宋建会), Zhou Feng(周凤), Wang Xiang(王湘), Ren Yi(任毅), Zhang Xiaohong(张晓红), Guo Mingming(郭鸣明), Qiao Jinliang(乔金樑). Acta Polymerica Sinica(高分子学报), 2017, (4): 676-682
Anjali D D, Smitha B, Sridhar S, Aminabhavi T M . J Membr Sci , 2005 . 262 91 - 99 . DOI:10.1016/j.memsci.2005.03.051http://doi.org/10.1016/j.memsci.2005.03.051 .
Nolte M C M, Simon P F W, del Toro M A, Gerstandt K, Calmano W . Sep Sci Technol , 2011 . 46 395 - 403 . DOI:10.1080/01496395.2010.521231http://doi.org/10.1080/01496395.2010.521231 .
Crosslinking Kinetics and Application of Chitosan-Genipin Nanogel
Construction of High Performance Chitosan Based Solid State Ion Thermoelectric Battery and Thermoelectric Performance
Polysaccharide Based Injectable Self-healing Hydrogels with Glucose Responsive Drug Release Behavior
Study on Antibacterial Function of Polyurethane Surface Modified with Endothelializable β-Peptide Polymer
Related Author
No data
Related Institution
College of Food Science and Technology, Nanjing Agricultural University
School of Applied Chemistry and Engineering, Univerdity of Science and Technology of China
State Kay Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Materials Science and Engineering, Northeast Forestry University
Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University