High Performance in Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Poly(vinyl alcohol) Fiber Induced by Conformational Change and Structural Rearrangement of Molecular Chains
返回论文页
Research Article|更新时间:2021-01-26
|
High Performance in Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Poly(vinyl alcohol) Fiber Induced by Conformational Change and Structural Rearrangement of Molecular Chains
Xin-yue Wang, Gu-yu Feng, Meng-juan Li, Ming-qiao Ge. High Performance in Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Poly(vinyl alcohol) Fiber Induced by Conformational Change and Structural Rearrangement of Molecular Chains. [J]. Acta Polymerica Sinica 0(5):648-655(2018)
DOI:
Xin-yue Wang, Gu-yu Feng, Meng-juan Li, Ming-qiao Ge. High Performance in Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Poly(vinyl alcohol) Fiber Induced by Conformational Change and Structural Rearrangement of Molecular Chains. [J]. Acta Polymerica Sinica 0(5):648-655(2018) DOI: 10.11777/j.issn1000-3004.2017.17208.
High Performance in Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Poly(vinyl alcohol) Fiber Induced by Conformational Change and Structural Rearrangement of Molecular Chains
We demonstrated a novel vapor annealing method to prepare PEDOT:PSS/PVA organic conducting fiber with high electrical conductivity and high performance. PEDOT:PSS/PVA blend fiber was prepared
via
wet-spinning technique from homogeneous spinning formulation composed of PVA aqueous solution and PEDOT:PSS aqueous dispersions. After that
blend fibers were annealed by dimethyl sulfoxide (DMSO) vapor to improve electrical conductivity of the blend fiber. The electrical conductivity and tensile property of the blend fiber
before and after DMSO vapor annealing
were characterized to investigate the influence of vapor annealing on their structure and property. The mechanism of performance improvement was investigated in detail by analyzing their chemical structure
surface composition
chain conformation
and surface morphology. Results showed that DMSO vapor annealing induced significant structural rearrangement in blend fibers
thereby leading to improvement in the electrical conductivity. Blend fiber reached peak conductivity of 16.5 S cm
–1
with the annealing time of 30 min. Vapor annealing induced phase separation between PEDOT grain and PSS segments
leading to amorphous PSS segments enriched on the surface of blend fibers
thus reducing the thickness of insulating PSS layer between adjacent PEDOT grains. Thinner PSS layer facilitated better connection between conductive PEDOT grains
which finally enhanced the conductivity of blend fibers. Vapor annealing also induced conformational transformation of PEDOT chains from benzoid structure to quinoid structure
which was favorable for charge transportation. As annealing time increased
fiber surface became smooth and surface roughness decreased. Meanwhile
tensile property of the blend fibers was also improved
with the Young’s modulus increasing from 3.0 GPa to 3.9 GPa
and the tensile strength from 110 MPa to 144 MPa. With this approach
it is possible to scale up the production to industrial scale due to the reduction of manufacturing cost. The treated PEDOT:PSS/PVA organic conducting fibers have potential wide applications such as smart electronic components in multifunctional electronic fabrics.
Wolfbeis O S . Anal Chem , 2008 . 80 4269 - 4283 . DOI:10.1021/ac800473bhttp://doi.org/10.1021/ac800473b .
Spinks G M, Mottaghitalab V, Bahrami-Samani M, Whitten P G, Wallace G G . Adv Mater , 2006 . 18 637 - 640 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Wang C Y, Mottaghitalab V, Too C O, Spinks G M, Wallace G G . J Power Sources , 2007 . 163 1105 - 1109 . DOI:10.1016/j.jpowsour.2006.08.021http://doi.org/10.1016/j.jpowsour.2006.08.021 .
Cherenack K, Zysset C, Kinkeldei T, Münzenrieder N, Tröster G . Adv Mater , 2010 . 22 5178 - 5182 . DOI:10.1002/adma.201002159http://doi.org/10.1002/adma.201002159 .
Egusa S, Wang Z, Chocat N, Ruff Z M, Stolyarov A M, Shemuly D, Sorin F, Rakich P T, Joannopoulos J D, Fink Y . Nat Mater , 2010 . 9 643 - 648 . DOI:10.1038/nmat2792http://doi.org/10.1038/nmat2792 .
Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Sun H, Gao C . Nat Commun , 2014 . 5 .
Yang Z, Deng J, Chen X, Ren J, Peng H . Angew Chem Int Ed , 2013 . 52 13453 - 13457 . DOI:10.1002/anie.201307619http://doi.org/10.1002/anie.201307619 .
Seyedin M Z, Razal J M, Innis P C, Wallace G G . Adv Funct Mater , 2014 . 24 2957 - 2966 . DOI:10.1002/adfm.v24.20http://doi.org/10.1002/adfm.v24.20 .
Li X, Liu Y, Shi Z, Li C, Chen G . RSC Adv , 2014 . 4 40385 - 40389 . DOI:10.1039/C4RA05952Bhttp://doi.org/10.1039/C4RA05952B .
Jalili R, Razal J M, Innis P C, Wallace G G . Adv Funct Mater , 2011 . 21 3363 - 3370 . DOI:10.1002/adfm.201100785http://doi.org/10.1002/adfm.201100785 .
Okuzaki H, Harashina Y, Yan H . Eur Polym J , 2009 . 45 256 - 261 . DOI:10.1016/j.eurpolymj.2008.10.027http://doi.org/10.1016/j.eurpolymj.2008.10.027 .
Xu Y T, Li X, Li X N, Wang R, Yang Z K . Acta Mater Compos Sin , 2012 . 3 111 - 116.
Yeo J S, Yun J M, Kim D Y, Park S, Kim S S, Yoon M H, Kim T W, Na S I . ACS Appl Mater Interfaces , 2012 . 4 2551 - 2560 . DOI:10.1021/am300231vhttp://doi.org/10.1021/am300231v .
Dickey K C, Anthony J E, Loo Y L . Adv Mater , 2006 . 18 1721 - 1726 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Wang X, Feng G, Ge M . J Mater Sci , 2017 . 52 6917 - 6927 . DOI:10.1007/s10853-017-0756-8http://doi.org/10.1007/s10853-017-0756-8 .
Wang X, Ge M, Feng G . Fiber Polym , 2015 . 16 2578 - 2585 . DOI:10.1007/s12221-015-5616-zhttp://doi.org/10.1007/s12221-015-5616-z .
Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y . Nano Res , 2009 . 2 343 - 348 . DOI:10.1007/s12274-009-9032-9http://doi.org/10.1007/s12274-009-9032-9 .
Zhang H, Xu J, Wen Y, Wang Z, Zhang J, Ding W . Synth Met , 2015 . 204 39 - 47 . DOI:10.1016/j.synthmet.2015.03.010http://doi.org/10.1016/j.synthmet.2015.03.010 .
Zhang X, Liu J, Xu B, Su Y, Luo Y . Carbon , 2011 . 49 1884 - 1893 . DOI:10.1016/j.carbon.2011.01.011http://doi.org/10.1016/j.carbon.2011.01.011 .
Stefanescu E A, Tan X, Lin Z, Bowler N, Kessler M R . Polymer , 2011 . 52 2016 - 2024 . DOI:10.1016/j.polymer.2011.02.050http://doi.org/10.1016/j.polymer.2011.02.050 .
Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, Haesendonck C, Anweraer M V, Salaneck W R, Berggren M . Chem Mater , 2006 . 18 4354 - 4360 . DOI:10.1021/cm061032+http://doi.org/10.1021/cm061032+ .
Xia Y, Sun K, Ouyang J . Adv Mater , 2012 . 24 2436 - 2440 . DOI:10.1002/adma.201104795http://doi.org/10.1002/adma.201104795 .
Kim G H, Shao L, Zhang K, Pipe K P . Nat Mater , 2013 . 12 719 - 723 . DOI:10.1038/nmat3635http://doi.org/10.1038/nmat3635 .
Ouyang J, Xu Q, Chu C W, Yang Y, Li G, Shinar J . Polymer , 2004 . 45 8443 - 8450 . DOI:10.1016/j.polymer.2004.10.001http://doi.org/10.1016/j.polymer.2004.10.001 .
Ouyang J, Chu C W, Chen F C, Xu Q, Yang Y . Adv Funct Mater , 2005 . 15 203 - 208 . DOI:10.1002/(ISSN)1616-3028http://doi.org/10.1002/(ISSN)1616-3028 .
Wang X, Perzon E, Delgado J L, de la Cruz P, Zhang F, Langa F, Andersson M, Inganäs, O . Appl Phys Lett , 2004 . 85 5081 - 5083 . DOI:10.1063/1.1825070http://doi.org/10.1063/1.1825070 .
Na S I, Wang G, Kim S S, Kim T W, Oh S H, Yu B K, Lee T, Kim D Y . J Mater Chem , 2009 . 19 9045 - 9053 . DOI:10.1039/b915756ehttp://doi.org/10.1039/b915756e .
Crispin X, Marciniak S, Osikowicz W, Zotti G, van der Gon A W, Louwet F, Fahlman M, Groenendaal L, de Schryver F, Salaneck W R . J Polym Sci, PartB: Polym Phys , 2003 . 41 2561 - 2583 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488 .
Preparation of High Performance Dielectric Elastomers by Tailoring the Aggregation Structure of Polyurethane
Phase Separation Behavior of Poly(methyl methacrylate)/ Poly(vinyl acetate)/Silica Blends
Application of Poly(3,4-ethylenedioxythiophene) in the Fields of Electromagnetic Interference Shielding
The Development of Polymer Physics and Characterization in Mainland China since Reform and Opening-up
Double-cable Conjugated Polymers and Their Application in Single-component Organic Solar Cells
Related Author
No data
Related Institution
Bohai Rim Collaborative Innovation Center on Green Chemical Application Technology, Department of Chemical Engineering, Weifang Vocational College
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University
College of Materials and Mechanical Engineering, Beijing Technology and Business University