4′-sulfonyl-bis(trifluorovinyloxy)biphenyl (DTS) and 4
4 ′-bis(trifluorovinyloxy)biphenyl (DTB) were carried out in diphenyl ether as the solvent. A series of perfluorocyclobutyl copoly(aryl ether)s containing biphenyl and sulfonyl moieties (PFCB-S-BP) were prepared
via
thermal [2
π
+ 2
π
] cycloaddition polymerization by controlling the ratio of DTS to DTB. PFCB-S-BP was synthesized when the ratio of DTS to DTB ranged from 3/7 to 7/3. Molecular weight and its distribution of PFCB-S-BP were measured by gel permeation chromatography (GPC). The GPC curves showed a narrow and unimodal elution peak. The number-average molecular weight of PFCB-S-BP was larger than 1.4 × 10
4
with a narrow molecular weight distribution ranging from 1.4 to 1.6. The chemical structures was characterized by Fourier transform infrared spectroscopy Fourier transform infrared spectroscopy (FTIR)
hydrogen nuclear magnetic resonance (
1
H-NMR) and fluorine nuclear magnetic resonance (
19
F-NMR). The characteristic signal of trifluorovinyl ether group of monomers at 1824 cm
−1
disappeared in Fourier transform infrared spectroscopy (FTIR) spectra of PFCB-S-BP and the strong perfluorocyclobutyl group characteristic peak at 957 cm
−1
appeared. The intensities of sulfonyl group characteristic absorption peaks at 1100 and 1315 cm
−1
increased with the increase in the ratio of DTS to DTB. From
1
H-NMR of PFCB-S-BP
the signal at 7.9 was assigned to the protons of benzene ring adjacent to sulfonyl group. The intensity of the signal increased with an increase in the ratio of DTS to DTB. For
19
F-NMR of PFCB-S-BP
the multiple peaks ranging from −127 to −134 were ascribed to the
cis
- and
trans
-substituted PFCB rings. These results indicated that DTS copolymerized with DTB
and PFCB-S-BP copolymers were successfully synthesized. The thermal property and solubility of PFCB-S-BP were also tested.
T
g
of PFCB-S-BP increased slightly from 146 °C to 153 °C with an increase in the ratio of DTS to DTB from 3/7 to 7/3. The decomposition temperature for 5% weight loss of PFCB-S-BP was above 470 °C. These results showed that PFCB-S-BP exhibited high thermal stability and was soluble in common organic solvents such as
Li Xiuhua(李秀华), Lin Yonghua(林永华), Liu Qunfang(刘群方), Meng Yuezhong(孟跃中). Acta Polymerica Sinica(高分子学报), 2012, (8): 902-909
Babb D A, Ezzell B R, Clement K S, Richey W F, Kennedy A P . J Polym Sci, Part A: Polym Chem , 1993 . 31 ( 13 ): 3465 - 3477 . DOI:10.1002/pola.1993.080311336http://doi.org/10.1002/pola.1993.080311336 .
Iacono S T, Budy S M, Jin J, Smith D W . J Polym Sci, Part A: Polym Chem , 2007 . 45 ( 24 ): 5705 - 5721 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Babb D A. Fluoropolymers 1: Synthesis. New York: Kluwer Academic Publishers, 2002. 25-50
Cheatham C M, Lee S N, Laane J, Babb D A, Smith D W . Polym Int , 1998 . 46 ( 4 ): 320 - 324 . DOI:10.1002/(ISSN)1097-0126http://doi.org/10.1002/(ISSN)1097-0126 .
Neilson A R, Budy S M, Ballato J M, Smith D W . Polymer , 2008 . 49 ( 15 ): 3228 - 3232 . DOI:10.1016/j.polymer.2008.05.020http://doi.org/10.1016/j.polymer.2008.05.020 .
Kennedy A P, Babb D A, Bremmer J N, Pasztor A J . J Polym Sci, Part A: Polym Chem , 1995 . 33 ( 11 ): 1859 - 1865 . DOI:10.1002/pola.1995.080331113http://doi.org/10.1002/pola.1995.080331113 .
Spraul B K, Suresh S, Jin J, Smith D W . J Am Chem Soc , 2006 . 128 ( 21 ): 7055 - 7064 . DOI:10.1021/ja0600227http://doi.org/10.1021/ja0600227 .
Kalaw G J D, Wahome J A N, Zhu Y, Balkus K J, Musselman I H, Yang D J, Ferraris J P . J Membr Sci , 2013 . 431 86 - 95 . DOI:10.1016/j.memsci.2012.12.012http://doi.org/10.1016/j.memsci.2012.12.012 .
Zhou J, Jin J, Haldeman A T, Wagener E H, Husson S M . J Appl Polym Sci , 2013 . 129 ( 6 ): 3226 - 3236 . DOI:10.1002/app.39048http://doi.org/10.1002/app.39048 .
Hong J, Bi L, Li S, Jia, G, Zhu Y, Li G, Huang Z . Polymer , 2016 . 93 37 - 43 . DOI:10.1016/j.polymer.2016.04.012http://doi.org/10.1016/j.polymer.2016.04.012 .
Zhou J, Tran M M, Haldeman A T, Jin J, Wagener E H, Husson S M . J Membr Sci , 2014 . 450 478 - 486 . DOI:10.1016/j.memsci.2013.09.031http://doi.org/10.1016/j.memsci.2013.09.031 .
Zhou J, Haldeman A T, Wagener E H, Husson, S . J Membr Sci , 2014 . 454 398 - 406 . DOI:10.1016/j.memsci.2013.12.044http://doi.org/10.1016/j.memsci.2013.12.044 .
Smith D W, Babb D A, Shah H V, Hoeglund A, Traiphol R, Perahia D, Boone H W, Langhoff C . J Fluorine Chem , 2000 . 104 ( 1 ): 109 - 117 . DOI:10.1016/S0022-1139(00)00233-5http://doi.org/10.1016/S0022-1139(00)00233-5 .
Babb D A, Boone H W, Smith D W, Rudolf P W . J Appl Polym Sci , 1998 . 69 ( 10 ): 2005 - 2012 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Huang X, Wang R, Zhao P, Lu G, Zhang S, Qing F L . Polymer , 2005 . 46 ( 18 ): 7590 - 7597 . DOI:10.1016/j.polymer.2005.06.016http://doi.org/10.1016/j.polymer.2005.06.016 .
Ring-opening Copolymerization of L-Lactide and δ-Valerolactone Catalyzed by Benzoxazolyl Urea Catalyst/MTBD
Homo- and Copolymerization of 4-Methyl-1-pentene and 1-Hexene with Pyridylamido Hafnium Catalyst
Ethylene/Isoprene Copolymerization with Supported Ziegler-Natta Catalyst Containing Internal Electron Donor
Progress in Anionic Ring-opening Homo/Co-polymerization of Cyclosiloxanes
Synthesis of Phthalazinone-containing Poly(aryl-ether-ketone) Block Copolymers with Good Solubility and High Thermal Stability
Related Author
No data
Related Institution
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University
Daqing Chemical Engineering Research Center, Petrochemical Research Institute, China National Petroleum Corporation Ltd
PetroChina Lanzhou Petrochemical Yulin Chemical Co., Ltd.
Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University