浏览全部资源
扫码关注微信
1. 清华大学化工系 先进材料教育部重点实验室 北京 100084
2. 北京化工研究院 北京 100013
3. 山西省化工研究院 太原 030021
Published:2016-6,
Received:10 November 2015,
Revised:15 December 2015,
扫 描 看 全 文
Shi-jie Xie, Mu Dong, Ke-zhi Wang, Zhao-xia Guo, Jian Yu. Morphology Evolution of Aryl Amide Derivative TMB5 as
Shi-jie Xie, Mu Dong, Ke-zhi Wang, Zhao-xia Guo, Jian Yu. Morphology Evolution of Aryl Amide Derivative TMB5 as
采用示差扫描量热、偏光显微镜、X-射线衍射、热重分析及红外光谱分析等手段
研究了以TMB5为代表的取代芳酰胺型
β
成核剂在不同加工条件下的形态演变规律及其对iPP的
β
诱导结晶行为的影响.结果表明
TMB5虽然没有明确的熔点
但其原始晶体可以在升温中逐渐熔融并在降温时形成较细的棒状形态;而TMB5对iPP结晶的诱导作用主要和其在iPP熔融体中产生的二次形态密切相关:在保证TMB5分解不明显的温度条件下
混炼温度的提高有利于TMB5在冷却过程中形成更为细小的棒状形态
使PP中
β
晶的相对含量提高;在混炼之后的二次加工成型过程中
较低的熔融温度和较慢的降温速度有利于
β
晶含量提高.
The differential scanning calorimetry (DSC)
thermogravimetric analysis(TGA)
polarizing optical microscopy (POM)
X-ray diffraction (XRD)
Fourier transform infrared spectroscopy (FTIR) were used to study the morphology evolution of an arylamide derivative TMB5 in different processing conditions and its effects on the
β
-crystal formation of iPP.The results show that TMB5 doesn't have a defined melting point but can melt gradually when heating to 200℃ or over.On cooling
the TMB5 dissolved in iPP recrystallizes in the form of thinner needles which is different from its original shape and affects significantly the subsequent morphology development of iPP and finally affects the content of
β
-form crystals in iPP.The compounding temperature is an important factor affecting the content of
β
-form crystals.When the compounding temperature is lower than the decomposition temperature of TMB5
the content of
β
-form crystals in iPP samples increases with increasing the compounding temperature.This can be explained by the formation of thinner needles and better dispersion of recrystallized TMB5.During the secondary processing procedure after compounding at a certain temperature
the lower melting temperature and cooling rate increase the content of
β
-form crystals in PP.
β成核剂TMB5形态演变β晶诱导
β Nucleating agentTMB5Morphology evolutionβ-Form crystals
J Varga . Macromol Sci,Phys , 2002 . B41 1121 - 1171.
S C Tjong , J S Shen , R K Y Li . Polym Eng Sci , 1996 . 36 ( 1 ): 100 - 105.
F Chu , T Yamaoka , Y Kimura . Polymer , 1995 . 36 ( 13 ): 2523 - 2530.
J Varga . Menyhard A.Macromolecules , 2007 . 40 2422 - 2431.
J Kotek , I Kelnar , H Synková , y'Z Star , J Baldrian . J Appl Polym Sci , 2007 . 103 ( 1 ): 506 - 511.
Q F Yi , X J Wen , J Y Dong , C C Han . Polymer , 2008 . 49 ( 23 ): 5053 - 5063.
H W Bai , Y Wang , Q Zhang , L Liu , Z W Zhou . J Appl Polym Sci , 2009 . 111 ( 3 ): 1624 - 1637.
R H Zhang , D Shi , S C Tjong , R K Y Li . J Polym Sci,Part B:Polym Phys , 2007 . 45 ( 19 ): 2674 - 2681.
Y J Li , X Y Wen , M Nie , Q Wang . J Appl Polym Sci , 2014 . 131 ( 16 ): 40605 .
Z W Cai , Y Zhang , J Q Li , Y R Shang , H Hong , J C Feng , S C Jiang , F Sergio . J Appl Polym Sci , 2013 . 128 ( 1 ): 628 - 635.
R Han , Y J Li , Q Wang , M Nie . RSC Adv , 2015 . 4 ( 110 ): 65035 - 65043.
M Dong , Z X Guo , Z Q Su , J Yu . J Polym Sci,Part B:Polym Phys , 2008 . 46 ( 12 ): 1183 - 1192.
M Dong , Z X Guo , J Yu , Z Q Su . J Polym Sci,Part B:Polym Phys , 2008 . 46 ( 16 ): 1725 - 1733.
M Dong , Z X Guo , J Yu , Z Q Su . J Polym Sci,Part B:Polym Phys , 2009 . 47 ( 3 ): 314 - 325.
M Dong , Z X Guo , Z Q Su , J Yu . J Appl Polym Sci , 2011 . 119 ( 3 ): 1375 - 1382.
Z Q Su , M Dong , Z X Guo , J Yu . Macromolecules , 2007 . 40 4217 - 2424.
J Varga , A Menyhard . Macromolecules , 2007 . 40 ( 7 ): 2422 - 2431.
A T Jones , J M Aizlewood , D R Beckett . Makromolekulare Chemie , 1964 . 75 ( 1 ): 134 - 158.
0
Views
10
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution