,但降低材料的亲水性和交联度.PLLA500-HDI的拉伸强度为6.7 MPa,可以满足生物材料的力学性能要求.通过体外降解实验,发现增加PUA材料的软段,降解速率下降.降解16周后,PLLA500-HDI降解最快,失重15.8%,而PLLA2000-HDI的降解速率最慢,失重5.5%,可能与其微相分离的结构有关.红外(ATR)分析表明降解的PUA膜中N-H的伸缩吸收峰(3364 cm
Biodegradable polyurethane-acrylate (PUA) was synthesized
via
UV-curing of hydroxyl terminated polyurethane acrylate oligomers
which were based on PLLA-diols (PLLA)
1
6-hexamethylene diisocyanate (HDI) and hydroxyethyl methyl acrylate (HEMA).PLLA was synthesized by ring opening polymerization of L-lactide (L-LA) initialized by 1
4-butanediol (BDO).PUA oligomers were characterized by NMR and GPC.Their morphological
hydrophilic and mechanical characteristics were inverstigated using DSC
TGA
DMA
contact angle and swelling analysis.The results showed that
with increasing PLLA length
T
g
of PUA increased
while PUA hydrophilicity and crosslink density were reduced.The tensile strength of PLLA500-HDI was 7.6 MPa that met the requirement of the mechanical properties for biomaterials.The degradation experiment indicated that increasing PLLA length lowered PUA degradation rate.The weight loss of PLLA500-HDI was 15.8%
the highest in the three polymers.PLLA2000-HDI showed the lowest degradation rate
which may be related to its microstructure.ATR analysis showed that the peak at 3364 cm
-1
(N-H) for the degraded film was broadened and the C=O peak (ester and urethane) was sharpened
which indicated the hydrolysis of ester and urethane bonds in the main chain of PUAs.TGA measurement indicated that thermal stability of degraded PLLA500/PLLA1000-HDI was weakened
while PLLA2000-HDI was more stable.SEM of PLLA500-HDI showed crack and holes and the phase separation was observed on the surface of PLLA2000-HDI.Cell culture on PUA materials indicated that they supported the binding of hASCs.Therefore these PUA materials are biocompatible and have potential to be used in hard tissue engineering.
J P Santerre , K Woodhouse , G Laroche , R S Labow . . Biomaterials , 2005 . 26 ( 35 ): 7457 - 7470 . DOI:10.1016/j.biomaterials.2005.05.079http://doi.org/10.1016/j.biomaterials.2005.05.079.
J Y Cherng , T Y Hou , M F Shih , H Talsma , W E Hennink . . International Journal of Pharmaceutics , 2013 . 450 ( 1-2 ): 145 - 162 . DOI:10.1016/j.ijpharm.2013.04.063http://doi.org/10.1016/j.ijpharm.2013.04.063.
S Mondal , D Martin . . Polym Degrad Stab , 2012 . 97 ( 8 ): 1553 - 1561 . DOI:10.1016/j.polymdegradstab.2012.04.008http://doi.org/10.1016/j.polymdegradstab.2012.04.008.
D Sarkar , S T Lopina . . Polym Degrad Stab , 2007 . 92 ( 11 ): 1994 - 2004 . DOI:10.1016/j.polymdegradstab.2007.08.003http://doi.org/10.1016/j.polymdegradstab.2007.08.003.
E M Christenson , M Dadsetan , M Wiggins , J M Anderson , A Hiltner . . J Biomed Mater Res , 2004 . 69A ( 3 ): 407 - 416 . DOI:10.1002/(ISSN)1097-4636http://doi.org/10.1002/(ISSN)1097-4636.
J P Santerre , R S Labow . . J Biomed Mater Res , 1997 . 36 ( 2 ): 223 - 232 . DOI:10.1002/(ISSN)1097-4636http://doi.org/10.1002/(ISSN)1097-4636.
J H Hong , H J Jeon , J H Yoo , W R Yu , J H Youk . . Polym Degrad Stab , 2007 . 92 ( 7 ): 1186 - 1192 . DOI:10.1016/j.polymdegradstab.2007.04.007http://doi.org/10.1016/j.polymdegradstab.2007.04.007.
M M Ding , Z Z Qian , J Wang , J H Li , H Tan , Q Gu , Q Fu . . Polym Chem , 2011 . 2 ( 4 ): 885 - 891 . DOI:10.1039/c0py00376jhttp://doi.org/10.1039/c0py00376j.
Y W Tang , R S Labow , J P Santerre . . Biomaterials , 2003 . 24 ( 17 ): 2805 - 2819 . DOI:10.1016/S0142-9612(03)00081-4http://doi.org/10.1016/S0142-9612(03)00081-4.
V K Hridya , M Jayabalan . . J Mater Sci:Mater Med , 2009 . 2 195 - 202.
G R Silva , C A Silva , C F Behar , E Ayres , R L Oréfice . . Polym Degrad Stab , 2010 . 95 ( 4 ): 491 - 499 . DOI:10.1016/j.polymdegradstab.2010.01.001http://doi.org/10.1016/j.polymdegradstab.2010.01.001.
J E McBane , S Sharifpoor , K Cai , R S Labow , J P Santerre . . Biomaterials , 2011 . 32 ( 26 ): 6034 - 6044 . DOI:10.1016/j.biomaterials.2011.04.048http://doi.org/10.1016/j.biomaterials.2011.04.048.
S A Guelcher , A Srinivasan , J E Dumas , J E Didier , S McBride , J O Hollinger . . Biomaterials , 2008 . 29 ( 12 ): 1762 - 1775 . DOI:10.1016/j.biomaterials.2007.12.046http://doi.org/10.1016/j.biomaterials.2007.12.046.
I Pereira , E Ayres , P S Patricio , A M Goes , V S Gomide , E Junior , R Orefice . . Acta Biomaterialia , 2010 . 6 ( 8 ): 3056 - 3066 . DOI:10.1016/j.actbio.2010.02.036http://doi.org/10.1016/j.actbio.2010.02.036.
C H Zhang , N Zhang , X J Wen . . J Biomed Mater Res , 2007 . 82A ( 3 ): 637 - 650 . DOI:10.1002/(ISSN)1552-4965http://doi.org/10.1002/(ISSN)1552-4965.
A D Celiz , J G W Smith , A K Patel , A L Hook , D Rajamohan , V T George , L Flatt , M J Patel , V C Epa , T Singh , R Langer , D G Anderson , N D Allen , D C Hay , D A Winkler , D A Barrett , M C Davies , L E Young , C Denning , M R Alexander . . Adv Mater , 2015 . 27 ( 27 ): 4006 - 4012 . DOI:10.1002/adma.201501351http://doi.org/10.1002/adma.201501351.
M Alishiri , A Shojaei , M J Abdekhodaie , H Yeganeh . . Mater Sci Eng:C , 2014 . 42 ( 1 ): 763 - 773.
D F Williams . . Biomaterials , 2008 . 29 ( 20 ): 2941 - 2953 . DOI:10.1016/j.biomaterials.2008.04.023http://doi.org/10.1016/j.biomaterials.2008.04.023.
D Macocinschi , D Filip , M Butnaru , C D Dimitriu . . J Mater Sci:Mater Med , 2009 . 20 ( 3 ): 775 - 783 . DOI:10.1007/s10856-008-3626-8http://doi.org/10.1007/s10856-008-3626-8.