A recurring challenge in the field of polymer nanocomposites (PNCs) is to control the spatial distribution of nanoparticles (NPs) throughout a polymer matrix and thereby optimize the desired macroscopic performance of PNCs.In this study
polystyrene-grafted silica (SiO
2
-PS) NPs with different grafted chain length and grafting density were prepared
via
miniemulsion polymerization.The grafted structure of SiO
2
-PS NPs was characterized
via
combination of Fourier transform infrared spectroscopy (FTIR)
transmission electron microscopy (TEM)
differential scanning calorimeter (DSC)
thermogravimetric analysis (TGA) and gel permeation chromatography (GPC).The core-shell structure of SiO
2
-PS NPs that consisted of different polymerization degrees of grafted chains (
N
) and grafting density (
σ
) can be synthesized by tuning various reaction conditions.The effect of
N
and
σ
on spatial distribution of SiO
2
-PS NP filled PS matrix was investigated by TEM observation.The results reveal that tunable specific spatial distribution of grafted NPs can be obtained through the control of
N
and
σ
.In the case of that
N
is basically the same
grafted particles with higher
σ
are miscible with PS matrix chains
leading to more homogeneous dispersion of NPs.While when
N
is very high for grafted NPs with roughly the same
σ
the grafted chains and the matrix chains are dewetting between each other
which is not effective for uniform dispersion.The thermodynamics stable state of NP distribution is merely related to
N
and
σ
and independent of the particle size.Furthermore
by comparing the results of SiO
2
-PS NP filled PS and polymethyl methacrylate (PMMA) matrices
the contribution of the chemical structure differences and compatibility between grafted chains and matrix chains on spatial distribution of NPs are also discussed.The phase separation behavior between the PMMA matrix and grafted PS chains makes a great difference to the spatial distribution of the grafted NPs.
关键词
接枝粒子空间分布接枝链聚合度接枝密度相容性
Keywords
Grafted nanoparticleSpatial distributionPolymerization degree of grafted chainsGrafting densityCompatibility
references
A C Balazs , T Emrick , T P Russell . Science , 2006 . 314 1107 - 1110 . DOI:10.1126/science.1130557http://doi.org/10.1126/science.1130557.
S K Kumar , N Jouault , B Benicewicz , T Neely . Macromolecules , 2013 . 46 3199 - 3214 . DOI:10.1021/ma4001385http://doi.org/10.1021/ma4001385.
C W Huang , J P Gao , W Yu , C X Zhou . Macromolecules , 2012 . 45 8420 - 8429 . DOI:10.1021/ma301186bhttp://doi.org/10.1021/ma301186b.
P Akcora , H J Liu , S K Kumar , J Moll , Y Li , B C Benicewicz , L S Schadler , D Acehan , A Z Panagiotopoulos , V Pryamitsyn , V Ganesan , J Iiavsky , P Thiyagarajan , R H Colby , J F Douglas . Nat Mater , 2009 . 8 354 - 359 . DOI:10.1038/nmat2404http://doi.org/10.1038/nmat2404.
D Sunday , J Ilavsky , D L Green . Macromolecules , 2012 . 45 4007 - 4011 . DOI:10.1021/ma300438ghttp://doi.org/10.1021/ma300438g.
G Lindenblatt , W Schärtl , T Pakula , M Schmidt . Macromolecules , 2000 . 33 9340 - 9347 . DOI:10.1021/ma001328fhttp://doi.org/10.1021/ma001328f.
K Matyjaszewski , P J Miller , N Shukla , B Immaraporn , A Gelman , B B Luokala , T M Siclovan , G Kickelbick , T Vallant , H Hoffmann , T Pakula . Macromolecules , 1999 . 32 8716 - 8724 . DOI:10.1021/ma991146phttp://doi.org/10.1021/ma991146p.
C Z Li , B C Benicewicz . Macromolecules , 2005 . 38 5929 - 5936 . DOI:10.1021/ma050216rhttp://doi.org/10.1021/ma050216r.
C H Liu , C Y Pan . Polymer , 2007 . 48 3679 - 3685 . DOI:10.1016/j.polymer.2007.04.055http://doi.org/10.1016/j.polymer.2007.04.055.
D M Qi , Z H Cao , U Ziener . Adv Colloid Interface Sci , 2014 . 211 47 - 62 . DOI:10.1016/j.cis.2014.06.001http://doi.org/10.1016/j.cis.2014.06.001.
F Lan , K X Liu , W Jiang , X B Zeng , Y Wu , Z W Gu . Nanotechnology , 2011 . 22 225604 DOI:10.1088/0957-4484/22/22/225604http://doi.org/10.1088/0957-4484/22/22/225604.
D M Qi , Y Z Bao , Z X Weng , Z M Huang . Polymer , 2006 . 47 4622 - 4629 . DOI:10.1016/j.polymer.2006.04.024http://doi.org/10.1016/j.polymer.2006.04.024.
Xianze Yin , Yeqiang Tan , Lei Lin , Yihu Song , Qiang Zheng . Acta Polymerica Sinica , 2012 . ( 11 ): 1355 - 1341 . http://www.gfzxb.org/CN/abstract/abstract13736.shtml.
J Z Zheng , X P Zhou , X L Xie , Y W Mai . Nanoscale , 2010 . 2 2269 - 2274 . DOI:10.1039/b9nr00344dhttp://doi.org/10.1039/b9nr00344d.
X Z Yin , Y Q Tan , Y H Song , Q Zheng . Chinese J Polym Sci , 2012 . 30 26 - 35 . DOI:10.1007/s10118-012-1099-1http://doi.org/10.1007/s10118-012-1099-1.
R Hasegawa , Y Aoki , M Doi . Macromolecules , 1996 . 29 6656 - 6662 . DOI:10.1021/ma960365xhttp://doi.org/10.1021/ma960365x.
TB Martin , A Jayaraman . Soft Matter , 2013 . 9 6876 - 6889 . DOI:10.1039/c3sm00144jhttp://doi.org/10.1039/c3sm00144j.
TB Martin , PM Dodd , A Jayaraman . Phys Rev Lett , 2013 . 110 018301 DOI:10.1103/PhysRevLett.110.018301http://doi.org/10.1103/PhysRevLett.110.018301.