浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 先进材料实验室 上海 200438
Published:2016-10,
Received:27 May 2016,
Revised:2 July 2016,
扫 描 看 全 文
Zhang Zhi-tao, Zhang Ye, Li Yi-ming, Peng Hui-sheng. The Advancement of Fiber-shaped Energy Harvesting and Storage Devices. [J]. Acta Polymerica Sinica (10):1284-1299(2016)
Zhang Zhi-tao, Zhang Ye, Li Yi-ming, Peng Hui-sheng. The Advancement of Fiber-shaped Energy Harvesting and Storage Devices. [J]. Acta Polymerica Sinica (10):1284-1299(2016) DOI: 10.11777/j.issn1000-3304.2016.16185.
近年来,可穿戴电子设备受到了人们的广泛关注,柔性、轻质和可集成成为发展的主流. 然而,随着可穿戴电子设备的快速发展,在能源供给上出现了一些瓶颈难题,如传统块状和板状能源器件难以根据应用要求紧贴不规则基底、柔性相对较低、不能透气导湿,这些问题严重限制了可穿戴设备及其他相关领域的发展. 解决上述问题的一个有效策略是将能源器件制成纤维结构. 虽然单根纤维状能源器件提供的能量有限,但是它们可以被编成织物,从而输出较高的总能量. 同时,能源织物可紧密贴合不规则基底如人体、能透气导湿,有效满足可穿戴设备的应用要求. 目前纤维状能源器件包括能量转换和储存两大类,能量转换器件主要有染料敏化太阳能电池、聚合物太阳能电池和钙钛矿电池太阳能电池,而能量储存器件则主要有超级电容器、锂离子电池、锂空气电池、锌空气电池、铝空气电池等. 在实际应用中,光电转换和能量储存2个功能往往被集成在同一根纤维状能源器件中. 本文重点介绍了纤维状能源器件的发展历史和研究现状,系统总结了这个领域面临的主要挑战,最后展望了本领域未来发展方向.
Wearable electronics has recently attracted great attentions regarding their flexibility
light weight and integratability.However
with the rapid development of wearable electronics
some knotty while urgent problems appear in the energy supply for them.For example
conventional planar energy devices with inferior flexibility are unable to conformally attach to the irregular substrates
besides their poor breathability and wet permeability.Such problems have severely restricted the progress of wearable electronics and other related research fields.A general and effective strategy to tackle abovementioned problems is designing energy devices into a fiber format.Although the supplied energy of single fiber-shaped energy device is still limited
these fiber-shaped power systems can be easily woven into textiles to realize high energy outputs.Meanwhile
energy textiles indicate many promising features such as the ability of conformally attaching to irregular substrates
e.g
.
human body
breathability and wet permeability
which can effectively meet the requirements in the advancement of wearable electronics.Fiber-shaped energy devices can be divided into two categories including energy harvesting and energy storage.Energy harvesting devices are mainly comprised of dye-sensitized solar cells
polymer solar cells and perovskite solar cells; while energy storage devices contains supercapacitors
lithium-ion batteries
lithium-air batteries
zinc-air batteries and aluminum-air batteries
etc
.For practical applications
energy harvesting and storage devices are usually integrated to realize a self-powering functionality.This review article emphatically introduces the history
the state-of-the-art and the remaining challenge of fiber-shaped energy harvesting and storage devices.Firstly
the available fiber electrodes are described with a focus on the advancement of carbon nanotube fibers that simultaneously demonstrate high mechanical
electrical and electrochemical properties.Secondly
a variety of fiber-shaped energy harvesting and storage as well as their integrated devices are carefully discussed.Thirdly
the recent development in making fiber-shaped energy devices into power textiles is briefly presented.The main directions in their further advancement are highlighted at end.
纤维状太阳能电池超级电容器锂离子电池集成
Fiber-shapedSolar cellLithium-ion batterySupercapacitorIntegration
G Zhou , F Li , H M Cheng . . Energy Environ Sci , 2014 . 7 ( 4 ): 1307 - 1338 . DOI:10.1039/C3EE43182Ghttp://doi.org/10.1039/C3EE43182G.
X Lu , M Yu , G Wang , Y Tong , Y Li . . Energy Environ Sci , 2014 . 7 ( 7 ): 2160 - 2181 . DOI:10.1039/c4ee00960fhttp://doi.org/10.1039/c4ee00960f.
K Yao , X K Xin , C C Chueh , K S Chen , Y X Xu , A K Y Jen . . Adv Funct Mater , 2015 . 25 ( 4 ): 567 - 574 . DOI:10.1002/adfm.v25.4http://doi.org/10.1002/adfm.v25.4.
D Yang , R Yang , J Zhang , Z Yang , S Liu , C Li . . Energy Environ Sci , 2015 . 8 ( 11 ): 3208 - 3214 . DOI:10.1039/C5EE02155Chttp://doi.org/10.1039/C5EE02155C.
Y Xie , C Xia , H Du , W Wang . . J Power Sources , 2015 . 286 561 - 570 . DOI:10.1016/j.jpowsour.2015.04.025http://doi.org/10.1016/j.jpowsour.2015.04.025.
N Li , Z Chen , W Ren , F Li , HM Cheng . . Proc Natl Acad Sci USA , 2012 . 109 ( 43 ): 17360 - 17365 . DOI:10.1073/pnas.1210072109http://doi.org/10.1073/pnas.1210072109.
B Baps , M EberK , M Koyuncu . . Key Eng Mater , 2001 . 206 937 - 940.
J Liu , M A G Namboothiry , D L Carroll . . Appl Phys Lett , 2007 . 90 ( 13 ): 133515 DOI:10.1063/1.2716864http://doi.org/10.1063/1.2716864.
X Fan , Z Chu , F Wang , C Zhang , L Chen , Y Tang , D Zou . . Adv Mater , 2008 . 20 ( 3 ): 592 - 595 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
M R Lee , R D Eckert , K Forberich , G Dennler , C J Brabec , R A Gaudiana . . Science , 2009 . 324 ( 5924 ): 232 - 235 . DOI:10.1126/science.1168539http://doi.org/10.1126/science.1168539.
T Chen , L Qiu , Z Cai , F Gong , Z Yang , Z Wang , H Peng . . Nano Lett , 2012 . 12 ( 5 ): 2568 - 2572 . DOI:10.1021/nl300799dhttp://doi.org/10.1021/nl300799d.
L Qiu , J Deng , X Lu , Z Yang , H Peng . . Angew Chem Int Ed , 2014 . 53 ( 39 ): 10425 - 10428 . DOI:10.1002/anie.201404973http://doi.org/10.1002/anie.201404973.
Z Yang , H Sun , T Chen , L Qiu , Y Luo , H Peng . . Angew Chem Int Ed , 2013 . 52 ( 29 ): 7545 - 7548 . DOI:10.1002/anie.201301776http://doi.org/10.1002/anie.201301776.
J Ren , L Li , C Chen , X Chen , Z Cai , L Qiu , Y Wang , X Zhu , H Peng . . Adv Mater , 2013 . 25 ( 8 ): 1155 - 1159 . DOI:10.1002/adma.201203445http://doi.org/10.1002/adma.201203445.
X Chen , L Qiu , J Ren , G Guan , H Lin , Z Zhang , P Chen , Y Wang , H Peng . . Adv Mater , 2013 . 25 ( 44 ): 6436 - 6441 . DOI:10.1002/adma.v25.44http://doi.org/10.1002/adma.v25.44.
Y Zhang , W Bai , J Ren , W Weng , H Lin , Z Zhang , H Peng . . J Mater Chem A , 2014 . 2 ( 29 ): 11054 - 11059 . DOI:10.1039/c4ta01878hhttp://doi.org/10.1039/c4ta01878h.
Y Zhang , W Bai , X Cheng , J Ren , W Weng , P Chen , X Fang , Z Zhang , H Peng . . Angew Chem Int Ed , 2014 . 126 ( 52 ): 14792 - 14796 . DOI:10.1002/ange.201409366http://doi.org/10.1002/ange.201409366.
X Fang , W Weng , J Ren , H Peng . . Adv Mater , 2016 . 28 ( 3 ): 491 -496 . DOI:10.1002/adma.v28.3http://doi.org/10.1002/adma.v28.3.
Y Zhang , L Wang , Z Guo , Y Xu , Y Wang , H Peng . . Angew Chem Int Ed , 2016 . 55 ( 14 ): 4487 - 4491 . DOI:10.1002/anie.201511832http://doi.org/10.1002/anie.201511832.
Y Xu , Y Zhang , Z Guo , J Ren , Y Wang , H Peng . . Angew Chem Int Ed , 2015 . 54 ( 51 ): 15390 - 15394 . DOI:10.1002/anie.201508848http://doi.org/10.1002/anie.201508848.
Y Xu , Y Zhao , J Ren , H Peng . . Angew Chem Int Ed , 2016 . 128 1 - 5 . DOI:10.1002/ange.201510990http://doi.org/10.1002/ange.201510990.
T Chen , L Qiu , Z Yang , Z Cai , J Ren , H Li , H Lin , X Sun , H Peng . . Angew Chem Int Ed , 2012 . 51 ( 48 ): 11977 - 11980 . DOI:10.1002/anie.201207023http://doi.org/10.1002/anie.201207023.
K Jiang , Q Li , S Fan . . Nature , 2002 . 419 ( 6909 ): 801 - 801 . DOI:10.1038/419801ahttp://doi.org/10.1038/419801a.
Longbin(丘龙斌) Qiu , Xuemei(孙雪梅) Sun , Zhibin(仰志斌) Yang , Wenhan(郭文瀚) Guo , Huisheng(彭慧胜) Peng . . Acta Chimica Sinica(化学学报) , 2012 . 70 ( 14 ): 1523 - 1532 . DOI:10.6023/A12030024http://doi.org/10.6023/A12030024.
Z Zhang , K Guo , Y Li , X Li , G Guan , H Li , Y Luo , F Zhao , Q Zhang , B Wei , Q Pei , H Peng . . Nature Photon , 2015 . 9 ( 4 ): 233 - 238.
W Weng , Q Sun , Y Zhang , H Lin , J Ren , X Lu , M Wang , H Peng . . Nano Lett , 2014 . 14 ( 6 ): 3432 - 3438 . DOI:10.1021/nl5009647http://doi.org/10.1021/nl5009647.
H Lin , W Weng , J Ren , L Qiu , Z Zhang , P Chen , X Chen , J Deng , Y Wang , H Peng . . Adv Mater , 2014 . 26 ( 8 ): 1217 - 1222 . DOI:10.1002/adma.v26.8http://doi.org/10.1002/adma.v26.8.
Y Luo , Y Zhang , Y Zhao , X Fang , J Ren , W Weng , Y Jiang , H Sun , B Wang , X Cheng . . J Mater Chem A , 2015 . 3 ( 34 ): 17553 - 17557 . DOI:10.1039/C5TA04457Jhttp://doi.org/10.1039/C5TA04457J.
Y Zhang , Y Wang , L Wang , Y Zhao , H Peng . . J Mater Chem A , 2016 . 4 9002 - 9008 . DOI:10.1039/C6TA03477Bhttp://doi.org/10.1039/C6TA03477B.
Z Cai , L Li , J Ren , L Qiu , H Lin , H Peng . . J Mater Chem A , 2013 . 1 ( 2 ): 258 - 261 . DOI:10.1039/C2TA00274Dhttp://doi.org/10.1039/C2TA00274D.
J Ren , Y Zhang , W Bai , X Chen , Z Zhang , X Fang , W Weng , Y Wang , H Peng . . Angew Chem Int Ed , 2014 . 126 ( 30 ): 7998 - 8003 . DOI:10.1002/ange.201402388http://doi.org/10.1002/ange.201402388.
B J Kim , D H Kim , YY Lee , HW Shin , G S Han , J S Hong , K Mahmood , T K Ahn , Y C Joo , K S Hong . . Energy Environ Sci , 2015 . 8 ( 3 ): 916 - 921 . DOI:10.1039/C4EE02441Ahttp://doi.org/10.1039/C4EE02441A.
Yaoguang(荣耀光) Rong , Anyi(梅安意) Mei , Linfeng(刘林峰) Liu , Xiong(李雄) Li , Hongwei(韩宏伟) Han . . Acta Chimica Sinica(化学学报) , 2015 . 73 ( 3 ): 237 - 251 . DOI:10.6023/A14100702http://doi.org/10.6023/A14100702.
Ruiyuan(刘瑞远) Liu , Baoquan(孙宝全) Sun . . Acta Chimica Sinica(化学学报) , 2015 . 73 ( 3 ): 225 - 236 . DOI:10.6023/A14100693http://doi.org/10.6023/A14100693.
J Liang , G Zhang , W Sun , P Dong . . Nano Energy , 2015 . 12 501 - 509 . DOI:10.1016/j.nanoen.2015.01.023http://doi.org/10.1016/j.nanoen.2015.01.023.
G Liu , M Peng , W Song , H Wang , D Zou . . Nano Energy , 2015 . 11 341 - 347 . DOI:10.1016/j.nanoen.2014.10.024http://doi.org/10.1016/j.nanoen.2014.10.024.
L Chen , H Dai , Y Zhou , Y Hu , T Yu , J Liu , Z Zou . . Chem Commun , 2014 . 50 ( 92 ): 14321 - 14324 . DOI:10.1039/C4CC03882Ghttp://doi.org/10.1039/C4CC03882G.
W Guo , C Xu , X Wang , S Wang , C Pan , C Lin , Z L Wang . . J Am Chem Soc , 2012 . 134 ( 9 ): 4437 - 4441 . DOI:10.1021/ja2120585http://doi.org/10.1021/ja2120585.
S Pan , Z Yang , H Li , L Qiu , H Sun , H Peng . . J Am Chem Soc , 2013 . 135 ( 29 ): 10622 - 10625 . DOI:10.1021/ja405012whttp://doi.org/10.1021/ja405012w.
Li(王藜) Wang , Miao(徐苗) Xu , Lei(应磊) Ying , Feng(刘烽) Liu , Yong(曹镛) Cao . . Acta Polymerica Sinica(高分子学报) , 2008 . ( 10 ): 993 - 997.
L Blankenburg , K Schultheis , H Schache , S Sensfuss , M Schrödner . . Sol Energ Mat Sol C , 2009 . 93 ( 4 ): 476 - 483 . DOI:10.1016/j.solmat.2008.12.013http://doi.org/10.1016/j.solmat.2008.12.013.
R Søndergaard , M Hösel , D Angmo , T T Larsen-Olsen , F C Krebs . . Mater Today , 2012 . 15 ( 1 ): 36 - 49.
F C Krebs , S A Gevorgyan , J Alstrup . . J Mater Chem , 2009 . 19 ( 30 ): 5442 - 5451 . DOI:10.1039/b823001chttp://doi.org/10.1039/b823001c.
F C Krebs , T Tromholt , M Jørgensen . . Nanoscale , 2010 . 2 ( 6 ): 873 - 886 . DOI:10.1039/b9nr00430khttp://doi.org/10.1039/b9nr00430k.
H Zhou , Q Chen , G Li , S Luo , T B Song , H S Duan , Z Hong , J You , Y Liu , Y Yang . . Science , 2014 . 345 ( 6196 ): 542 - 546 . DOI:10.1126/science.1254050http://doi.org/10.1126/science.1254050.
A Mei , X Li , L Liu , Z Ku , T Liu , Y Rong , M Xu , M Hu , J Chen , Y Yang . . Science , 2014 . 345 ( 6194 ): 295 - 298 . DOI:10.1126/science.1254763http://doi.org/10.1126/science.1254763.
D Liu , T L Kelly . . Nature Photon , 2014 . 8 ( 2 ): 133 - 138.
Qifan(薛启帆) Xue , Chen(孙辰) Sun , Zhicheng(胡志诚) Hu , Fei(黄飞) Huang , Hin-Lap(叶轩立) Yip , Yong(曹镛) Cao . . Acta Chimica Sinica(化学学报) , 2014 . 73 ( 3 ): 179 - 192.
Taiyang(张太阳) Zhang , Yixin(赵一新) Zhao . . Acta Chimica Sinica(化学学报) , 2015 . 73 ( 3 ): 202 - 210 . DOI:10.6023/A14090656http://doi.org/10.6023/A14090656.
Ye(张烨) Zhang , Zhibo(姚志博) Yao , Shiwei(林仕伟) Lin , Jianbao(李建保) Li , Hong(林红) Lin . . Acta Chimica Sinica(化学学报) , 2015 . 73 ( 3 ): 219 - 224 . DOI:10.6023/A14090678http://doi.org/10.6023/A14090678.
W S Yang , J H Noh , N J Jeon , Y C Kim , S Ryu , J Seo , S I Seok . . Science , 2015 . 348 ( 6240 ): 1234 - 1237 . DOI:10.1126/science.aaa9272http://doi.org/10.1126/science.aaa9272.
Nana(王娜娜) Wang , Junjie(司俊杰) Si , Yizheng(金一政) Jin , Jianpu(王建浦) Wang , Wei(黄维) Huang . . Acta Chimica Sinica(化学学报) , 2014 . 73 ( 3 ): 171 - 178.
Xudong(郭旭东) Guo , Guangda(牛广达) Niu , Liduo(王立铎) Wang . . Acta Chimica Sinica(化学学报) , 2014 . 73 ( 3 ): 211 - 218.
B E Hardin , H J Snaith , M D McGehee . . Nature Photon , 2012 . 6 ( 3 ): 162 - 169 . DOI:10.1038/nphoton.2012.22http://doi.org/10.1038/nphoton.2012.22.
T Chen , L Qiu , H G Kia , Z Yang , H Peng . . Adv Mater , 2012 . 24 ( 34 ): 4623 - 4628 . DOI:10.1002/adma.v24.34http://doi.org/10.1002/adma.v24.34.
F Cai , T Chen , H Peng . . J Mater Chem , 2012 . 22 ( 30 ): 14856 - 14860 . DOI:10.1039/c2jm32256khttp://doi.org/10.1039/c2jm32256k.
S Ahmad , E Guillen , L Kavan , M Gratzelc , M K Nazeeruddinc . . Energy Environ Sci , 2013 . 6 ( 12 ): 3439 - 3466 . DOI:10.1039/c3ee41888jhttp://doi.org/10.1039/c3ee41888j.
X Fang , Z Yang , L Qiu , H Sun , S Pan , J Deng , Y Luo , H Peng . . Adv Mater , 2014 . 26 ( 11 ): 1694 - 1698 . DOI:10.1002/adma.201305241http://doi.org/10.1002/adma.201305241.
H Li , Z Yang , L Qiu , X Fang , H Sun , P Chen , S Pan , H Peng . . J Mater Chem A , 2014 . 2 ( 11 ): 3841 - 3846 . DOI:10.1039/c3ta13714ghttp://doi.org/10.1039/c3ta13714g.
Z Yang , J Deng , X Sun , H Li , H Peng . . Adv Mater , 2014 . 26 ( 17 ): 2643 - 2647 . DOI:10.1002/adma.v26.17http://doi.org/10.1002/adma.v26.17.
Z He , C Zhong , S Su , M Xu , H Wu , Y Cao . . Nature Photon , 2012 . 6 ( 9 ): 591 - 595.
G Li , R Zhu , Y Yang . . Nature Photon , 2012 . 6 ( 3 ): 153 - 161 . DOI:10.1038/nphoton.2012.11http://doi.org/10.1038/nphoton.2012.11.
T Chen , L Qiu , H Li , H Peng . . J Mater Chem , 2012 . 22 ( 44 ): 23655 - 23658 . DOI:10.1039/c2jm35158ghttp://doi.org/10.1039/c2jm35158g.
D Liu , M Zhao , Y Li , Z Bian , L Zhang , Y Shang , X Xia , S Zhang , D Yun , Z Liu . . ACS Nano , 2012 . 6 ( 12 ): 11027 - 11034.
Z Zhang , Z Yang , Z Wu , G Guan , S Pan , Y Zhang , H Li , J Deng , B Sun , H Peng . . Adv Energy Mater , 2014 . 4 ( 11 ): 1301750 DOI:10.1002/aenm.201301750http://doi.org/10.1002/aenm.201301750.
D Liu , Y Li , S Zhao , A Cao , C Zhang , Z Liu , Z Bian , Z Liu , C Huang . . RSC Adv , 2013 . 3 ( 33 ): 13720 - 13727 . DOI:10.1039/c3ra40710ahttp://doi.org/10.1039/c3ra40710a.
R Li , X Xiang , X Tong , J Zou , Q Li . . Adv Mater , 2015 . 27 ( 25 ): 3831 - 3835 . DOI:10.1002/adma.v27.25http://doi.org/10.1002/adma.v27.25.
M A Green , A HoB , H J Snaith . . Nature Photon , 2014 . 8 ( 7 ): 506 - 514 . DOI:10.1038/nphoton.2014.134http://doi.org/10.1038/nphoton.2014.134.
Zhipeng(邵志鹏) Shao , Xu(潘旭) Pan , Xuhui(张旭辉) Zhang , Jiajiu(叶加久) Ye , Liangzheng(朱梁正) Zhu , Yi(李毅) Li , Yanmei(马艳梅) Ma , Yang(黄阳) Huang , Jun(朱俊) Zhu , Linhua(胡林华) Hu , Fantai(孔凡太) Kong , Songyuan(戴松元) Dai . . Acta Chimica Sinica(化学学报) , 2014 . 73 ( 3 ): 267 - 271.
Lifeng(朱立峰) Zhu , Jiangjian(石将建) Shi , Dongmei(李冬梅) Li , Qingbo(孟庆波) Meng . . Acta Chimica Sinica(化学学报) , 2015 . 73 ( 3 ): 261 - 266 . DOI:10.6023/A14110823http://doi.org/10.6023/A14110823.
L Qiu , S He , J Yang , J Deng , H Peng . . Small , 2016 . 12 ( 18 ): 2419 - 2424 . DOI:10.1002/smll.v12.18http://doi.org/10.1002/smll.v12.18.
M R Palacin , Guibert A de . . Science , 2016 . 351 ( 6273 ): 1253292 DOI:10.1126/science.1253292http://doi.org/10.1126/science.1253292.
P Simon , Y Gogotsi . . Nature materials , 2008 . 7 ( 11 ): 845 - 854 . DOI:10.1038/nmat2297http://doi.org/10.1038/nmat2297.
V Etacheri , R Marom , R Elazari , G Salitra , D Aurbach . . Energy Environ Sci , 2011 . 4 ( 9 ): 3243 - 3262 . DOI:10.1039/c1ee01598bhttp://doi.org/10.1039/c1ee01598b.
D Yu , K Goh , H Wang , L Wei , W Jiang , Q Zhang , L Dai , Y Chen . . Nature Nanotech , 2014 . 9 ( 7 ): 555 - 562 . DOI:10.1038/nnano.2014.93http://doi.org/10.1038/nnano.2014.93.
Q Wang , X Wang , J Xu , X Ouyang , X Hou , D Chen , R Wang , G Shen . . Nano Energy , 2014 . 8 44 - 51 . DOI:10.1016/j.nanoen.2014.05.014http://doi.org/10.1016/j.nanoen.2014.05.014.
W Xiong , X Hu , X Wu , Y Zeng , B Wang , G He , Z Zhu . . J.Mater.Chem.A , 2015 . 3 ( 33 ): 17209 - 17216 . DOI:10.1039/C5TA04201Ahttp://doi.org/10.1039/C5TA04201A.
J Ren , W Bai , G Guan , Y Zhang , H Peng . . Adv Mater , 2013 . 25 ( 41 ): 5965 - 5970 . DOI:10.1002/adma.201302498http://doi.org/10.1002/adma.201302498.
H Jin , L Zhou , C..L Mak , H Huang , W.M Tang , W Chan . . Nano Energy , 2015 . 11 662 - 670 . DOI:10.1016/j.nanoen.2014.11.055http://doi.org/10.1016/j.nanoen.2014.11.055.
Chen(沈宸) Shen , Yun(陆云) Lu . . Acta Polymerica Sinica(高分子学报) , 2014 . ( 10 ): 1328 - 1341.
Nan(陈南) Chen , Yue(胡悦) Hu , Yang(赵扬) Zhao , Liangti(曲良体) Qu . . Acta Polymerica Sinica(高分子学报) , 2014 . ( 6 ): 752 - 760.
Z Yang , J Deng , X Chen , J Ren , H Peng . . Angew Chem Int Ed , 2013 . 52 ( 50 ): 13453 - 13457 . DOI:10.1002/anie.201307619http://doi.org/10.1002/anie.201307619.
X Chen , H Lin , J Deng , Y Zhang , X Sun , P Chen , X Fang , Z Zhang , G Guan , H Peng . . Adv Mater , 2014 . 26 ( 48 ): 8126 - 8132 . DOI:10.1002/adma.201403243http://doi.org/10.1002/adma.201403243.
H Sun , X You , Y Jiang , G Guan , X Fang , J Deng , P Chen , Y Luo , H Peng . . Angew Chem Int Ed , 2014 . 53 ( 36 ): 9526 - 9531 . DOI:10.1002/anie.201405145http://doi.org/10.1002/anie.201405145.
J Deng , Y Zhang , Y Zhao , P Chen , X Cheng , H Peng . . Angew Chem Int Ed , 2015 . 54 ( 51 ): 15419 - 15423 . DOI:10.1002/anie.201508293http://doi.org/10.1002/anie.201508293.
J Bae , Y J Park , M Lee , S N Cha , Y J Choi , C S Lee , J M Kim , Z L Wang . . Adv Mater , 2011 . 23 ( 30 ): 3446 - 3449 . DOI:10.1002/adma.201101345http://doi.org/10.1002/adma.201101345.
C Pan , W Guo , L Dong , G Zhu , Z L Wang . . Adv Mater , 2012 . 24 ( 25 ): 3356 - 3361 . DOI:10.1002/adma.v24.25http://doi.org/10.1002/adma.v24.25.
Y Fu , H Wu , S Ye , X Cai , X Yu , S Hou , H Kafafy , D Zou . . Energy Environ Sci , 2013 . 6 ( 3 ): 805 - 812 . DOI:10.1039/c3ee23970ehttp://doi.org/10.1039/c3ee23970e.
Z Zhang , X Chen , P Chen , G Guan , L Qiu , H Lin , Z Yang , W Bai , Y Luo , H Peng . . Adv Mater , 2014 . 26 ( 3 ): 466 - 470 . DOI:10.1002/adma.201302951http://doi.org/10.1002/adma.201302951.
Z Yang , J Deng , H Sun , J Ren , S Pan , H Peng . . Adv Mater , 2014 . 26 ( 41 ): 7038 - 7042 . DOI:10.1002/adma.201401972http://doi.org/10.1002/adma.201401972.
Y Zhang , Y Zhao , X Cheng , W Weng , J Ren , X Fang , Y Jiang , P Chen , Z Zhang , Y Wang . . Angew Chem Int Ed , 2015 . 54 ( 38 ): 11177 - 11182 . DOI:10.1002/anie.201506142http://doi.org/10.1002/anie.201506142.
S Pan , Z Yang , P Chen , J Deng , H Li , H Peng . . Angew Chem Int Ed , 2014 . 53 ( 24 ): 6110 - 6114 . DOI:10.1002/anie.201402561http://doi.org/10.1002/anie.201402561.
YH Lee , JS Kim , J Noh , I Lee , H J Kim , S Choi , J Seo , S Jeon , TS Kim , JY Lee . . Nano Lett , 2013 . 13 ( 11 ): 5753 - 5761 . DOI:10.1021/nl403860khttp://doi.org/10.1021/nl403860k.
S Lee , Y Lee , J Park , D Choi . . Nano Energy , 2014 . 9 88 - 93 . DOI:10.1016/j.nanoen.2014.06.017http://doi.org/10.1016/j.nanoen.2014.06.017.
H Cheng , Z Dong , C Hu , Y Zhao , Y Hu , L Qu , N Chen , L Dai . . Nanoscale , 2013 . 5 ( 8 ): 3428 - 3434 . DOI:10.1039/c3nr00320ehttp://doi.org/10.1039/c3nr00320e.
J Xu , D Wang , Y Yuan , W Wei , L Duan , L Wang , H Bao , W Xu . . Org Electron , 2015 . 24 153 - 159 . DOI:10.1016/j.orgel.2015.05.037http://doi.org/10.1016/j.orgel.2015.05.037.
Z Zhang , X Li , G Guan , S Pan , Z Zhu , D Ren , H Peng . . Angew Chem Int Ed , 2014 . 126 ( 43 ): 11755 - 11758 . DOI:10.1002/ange.201407688http://doi.org/10.1002/ange.201407688.
L Hu , M Pasta , F L Mantia , L Cui , S Jeong , H D Deshazer , J W Choi , S M Han , Y Cui . . Nano Lett , 2010 . 10 ( 2 ): 708 - 714 . DOI:10.1021/nl903949mhttp://doi.org/10.1021/nl903949m.
L Bao , X Li . . Adv Mater , 2012 . 24 ( 24 ): 3246 - 3252 . DOI:10.1002/adma.v24.24http://doi.org/10.1002/adma.v24.24.
S Pan , H Lin , J Deng , P Chen , X Chen , Z Yang , H Peng . . Adv Energy Mater , 2015 . 5 ( 4 ): 1401438 DOI:10.1002/aenm.201401438http://doi.org/10.1002/aenm.201401438.
A R Yusoff , D Kim , H P Kim , F K Shneider , W J Silva , J Jang . . Energy Environ Sci , 2015 . 8 ( 1 ): 303 - 316 . DOI:10.1039/C4EE03048Fhttp://doi.org/10.1039/C4EE03048F.
K Jost , G Dion , Y Gogotsi . . J Mater Chem A , 2014 . 2 ( 28 ): 10776 - 10787 . DOI:10.1039/c4ta00203bhttp://doi.org/10.1039/c4ta00203b.
D Yu , Q Qian , L Wei , W Jiang , K Goh , J Wei , J Zhang , Y Chen . . Chem Soc Rev , 2015 . 44 ( 3 ): 647 - 662 . DOI:10.1039/C4CS00286Ehttp://doi.org/10.1039/C4CS00286E.
T Chen , L Qiu , Z Yang , H Peng . . Chem Soc Rev , 2013 . 42 ( 12 ): 5031 - 5041 . DOI:10.1039/c3cs35465bhttp://doi.org/10.1039/c3cs35465b.
0
Views
44
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution