浏览全部资源
扫码关注微信
深圳市高分子材料及制造技术重点实验室 深圳大学材料学院 深圳 518060
Published:2017-3,
Received:12 April 2016,
Revised:20 June 2016,
扫 描 看 全 文
Hu Mei-shao, Ni Jiang-peng, Liu Dan-qing, Wang Lei. Preparation and Properties of Branched Poly (aryl ether benzimidazole) High Temperature Proton Exchange Membranes. [J]. Acta Polymerica Sinica (3):534-541(2017)
Hu Mei-shao, Ni Jiang-peng, Liu Dan-qing, Wang Lei. Preparation and Properties of Branched Poly (aryl ether benzimidazole) High Temperature Proton Exchange Membranes. [J]. Acta Polymerica Sinica (3):534-541(2017) DOI: 10.11777/j.issn1000-3304.2017.16121.
通过引入1,3,5-苯三酸作为支化结构,制备了一种新型的支化型聚醚聚苯并咪唑(OPBI)高温燃料电池质子交换膜,并对支化OPBI质子交换膜的磷酸掺杂率、抗氧化稳定性、机械性能以及质子传导率等一系列性质进行了深入研究.与线型聚苯并咪唑(PBI)相比,支化OPBI具有独特的三维空间结构,极大地提高了磷酸掺杂量,随着支化度的提高,磷酸掺杂率和质子传导率随之提高.支化度为9%时,聚合物的磷酸掺杂率高达9.2 PRU
-1
,质子传导率达到0.0314 S/cm.此外,支化OPBI膜的溶解性较线型PBI也有较大的改善,进一步提高了聚合物的可加工性.同时,支化OPBI膜的热稳定性和抗氧化稳定性也得到了一定程度的提高,虽然机械性能略有下降,但仍能满足高温燃料电池的使用要求.
A series of novel branched poly(aryl ether benzimidazole) (OPBI) with 1
3
5-benzenetricarboxylic acid (BTA) as branching agent were synthesized and applied as proton exchange membranes for high temperature fuel cell. The introduction of branching points and aryl ether groups gave the branched OPBIs unique three-dimensional structures for acid absorption. Consequently
the proton conductivity was improved. The structure of branched OPBI was characterized by Fourier transform infrared spectroscopy (FTIR) and
1
H-NMR spectra. The branched OPBI proton exchange membranes was directly produced by the solution casting process. Acid doping level (ADL)
proton conductivity
solubility
thermal and oxidative stability
and mechanical properties of the proton exchange membranes were studied in detail. As the branching degree increased
the phosphoric acid (PA) doping level
proton conductivity and oxidative stability of the branched membranes were clearly improved. Compared with linear
p
-PBI and OPBI proton exchange membranes
the branched OPBI membranes had more free volume for acid absorption. The PA doping level of branched OPBI membranes with a 9% degree of branching exhibited the highest ADL of approximately 9.2 PA PRU
-1
which was approximately 1.4 times greater than that of the linear OPBI membranes. The proton conductivity of the 9% branched OPBI membrane reached 0.0314 S/cm at 180℃
which was nearly 1.8 times greater than that of the linear PBI membranes. Compared with linear PBIs
an excellent solubility of branched OPBI was observed. The improved solubility of branched OPBI in common solvents such as DMSO
DMAc at room temperature
may be derived from the introduction of aryl ether and the branching point. Moreover
branched OPBI membranes showed excellent thermal stability (decomposition temperature
>
500℃) and oxidative stability (weight loss
<
12% in Fenton's reagent for 60 h). Even though the mechanical properties of branched OPBI membranes need further improvements
all of these properties indicate that branched OPBI membranes are promising candidates for high temperature proton exchange membranes fuel cells (HT-PEMFC).
高温燃料电池质子交换膜聚醚聚苯并咪唑支化改性磷酸掺杂率
High temperature fuel cellProton exchange membranePoly(aryl ether benzimidazole)Branched structurePhosphoric acid doping level
P J Hamilton , B G Pollet . . Fuel Cells , 2010 . 10 ( 4 ): 489 - 509 . DOI:10.1002/fuce.v10:4http://doi.org/10.1002/fuce.v10:4.
R K Pachauri , Y K Chauhan . . Renew Sust Energ Rev , 2015 . 43 1301 - 1319 . DOI:10.1016/j.rser.2014.11.098http://doi.org/10.1016/j.rser.2014.11.098.
S Sharma , B G Pollet . . J Power Sources , 2012 . 208 96 - 119 . DOI:10.1016/j.jpowsour.2012.02.011http://doi.org/10.1016/j.jpowsour.2012.02.011.
A Chandan , M Hattenberger , Kharouf A El , S F Du , A Dhir , V Self , B G Pollet , A Ingram , W Bujalski . . J Power Sources , 2013 . 231 264 - 278 . DOI:10.1016/j.jpowsour.2012.11.126http://doi.org/10.1016/j.jpowsour.2012.11.126.
J L Zhang , Z Xie , J J Zhang , Y H Tanga , C J Song , T Navessin , Z Q Shi , D T Song , H J Wang , D P Wilkinson , Z S Liu , S Holdcroft . . J Power Sources , 2006 . 160 ( 2 ): 872 - 891 . DOI:10.1016/j.jpowsour.2006.05.034http://doi.org/10.1016/j.jpowsour.2006.05.034.
S Bose , T Kuila , T X H Nguyen , N H Kim , K T Lau , J H Lee . . Prog Polym Sci , 2011 . 36 ( 6 ): 813 - 843 . DOI:10.1016/j.progpolymsci.2011.01.003http://doi.org/10.1016/j.progpolymsci.2011.01.003.
Q Li , J O Jensen , R F Savinell , N J Bjerrum . . Prog Polym Sci , 2009 . 34 ( 5 ): 449 - 477 . DOI:10.1016/j.progpolymsci.2008.12.003http://doi.org/10.1016/j.progpolymsci.2008.12.003.
A Y Leykin , A I Fomenkov , E G Galpern , I V Stankevich , A L Rusanov . . Polymer , 2010 . 51 ( 18 ): 4053 - 4057 . DOI:10.1016/j.polymer.2010.06.053http://doi.org/10.1016/j.polymer.2010.06.053.
M F H Schuster , W H Meyer . . Annu Rev Mater Res , 2003 . 33 ( 1 ): 233 - 261 . DOI:10.1146/annurev.matsci.33.022702.155349http://doi.org/10.1146/annurev.matsci.33.022702.155349.
F Ublekov , H Penchev , V Georgiev , I Radev , V Sinigersky . . Mater Lett , 2014 . 135 5 - 7 . DOI:10.1016/j.matlet.2014.07.128http://doi.org/10.1016/j.matlet.2014.07.128.
T H Kim , S K Kim , T W Lim , J C Lee . . J Membrane Sci , 2008 . 323 ( 2 ): 362 - 370 . DOI:10.1016/j.memsci.2008.06.040http://doi.org/10.1016/j.memsci.2008.06.040.
S Subianto . . Polym Int , 2014 . 63 ( 7 ): 1134 - 1144 . DOI:10.1002/pi.2014.63.issue-7http://doi.org/10.1002/pi.2014.63.issue-7.
S Maity , T Jana . . ACS Appl Mater Inter , 2014 . 6 ( 9 ): 6851 - 6864 . DOI:10.1021/am500668chttp://doi.org/10.1021/am500668c.
L Wang , D G Wang , G M Zhu , J Q Li . . Eur Polym J , 2011 . 47 ( 10 ): 1985 - 1993.
H Xu , K Chen , X Guo , J Fang , J Yin . . J Polym Sci Pol Chem , 2007 . 45 ( 6 ): 1150 - 1158 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
S Bhadra , N H Kim , J S Choi , K Y Rhee , J H Lee . . J Power Sources , 2010 . 195 ( 9 ): 2470 - 2477 . DOI:10.1016/j.jpowsour.2009.11.083http://doi.org/10.1016/j.jpowsour.2009.11.083.
H L Lin , Y C Chen , C C Li , C P Cheng , T L Yu . . J Power Sources , 2008 . 181 ( 2 ): 228 - 236 . DOI:10.1016/j.jpowsour.2008.01.035http://doi.org/10.1016/j.jpowsour.2008.01.035.
Y Kang , J Zou , Z Sun , F Wang , H Zhu , K Han , W Yang , H Song , Q Meng . . Int J Hydrogen Energ , 2013 . 38 ( 15 ): 6494 - 6502 . DOI:10.1016/j.ijhydene.2013.03.051http://doi.org/10.1016/j.ijhydene.2013.03.051.
J M J Fréchet , C J Hawker . . React Funct Polym , 1995 . 26 ( 1-3 ): 127 - 136 . DOI:10.1016/1381-5148(95)00010-Dhttp://doi.org/10.1016/1381-5148(95)00010-D.
S Maity , A Sannigrahi , S Ghosh , T Jana . . Eur Polym J , 2013 . 49 ( 8 ): 2280 - 2292 . DOI:10.1016/j.eurpolymj.2013.05.011http://doi.org/10.1016/j.eurpolymj.2013.05.011.
P Noy , Q F Li , C Pan , N J Bjerrurn . . Polym Adv Technol , 2008 . 19 ( 9 ): 1270 - 1275 . DOI:10.1002/pat.v19:9http://doi.org/10.1002/pat.v19:9.
H C Luo , H T Pu , Z H Chang , D C Wan , H Y Pan . . J Mater Chem , 2012 . 22 ( 38 ): 20696 - 20705 . DOI:10.1039/c2jm33725hhttp://doi.org/10.1039/c2jm33725h.
J Ni , M Hu , D Liu , H Xie , X Xiang , L Wang . . J Mater Chem C , 2016 . 4 ( 21 ): 4814 - 4821 . DOI:10.1039/C6TC00862Chttp://doi.org/10.1039/C6TC00862C.
Z X Li , J H Liu , S Y Yang , S H Huang , J D Lu , J L Pu . . J Polym Sci, Part A:Polym Chem , 2006 . 44 ( 19 ): 5729 - 5739 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
C Liu , S B Khan , M Lee , K I Kim , K Akhtar , H Han , A M Asiri . . Macromol Res , 2013 . 21 ( 1 ): 35 - 41 . DOI:10.1007/s13233-012-0191-2http://doi.org/10.1007/s13233-012-0191-2.
Y L Ma , J S Wainright , M H Litt , R F Savinell . . J Electrochem Soc , 2004 . 151 ( 1 ): A8 - A16 . DOI:10.1149/1.1630037http://doi.org/10.1149/1.1630037.
Z Y Yue , Y B Cai , S A Xu . . J Membrane Sci , 2016 . 501 220 - 227 . DOI:10.1016/j.memsci.2015.11.045http://doi.org/10.1016/j.memsci.2015.11.045.
0
Views
23
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution