Yuan Yi, Mu Ruo-jun, Yang Dan, Tan Xiao-dan, Huang Rong-xun, Li Chong-gao, Xie Bing-qing, Wang Min, Pang Jie. Konjac Glucomannan/Poly (vinyl alcohol) Nanofiber Film and Its Drug Release Behavior. [J]. Acta Polymerica Sinica (3):498-505(2017)
DOI:
Yuan Yi, Mu Ruo-jun, Yang Dan, Tan Xiao-dan, Huang Rong-xun, Li Chong-gao, Xie Bing-qing, Wang Min, Pang Jie. Konjac Glucomannan/Poly (vinyl alcohol) Nanofiber Film and Its Drug Release Behavior. [J]. Acta Polymerica Sinica (3):498-505(2017) DOI: 10.11777/j.issn1000-3304.2017.16141.
Konjac Glucomannan/Poly (vinyl alcohol) Nanofiber Film and Its Drug Release Behavior
Nanofiber films froms different proportion of konjac glucomannan (KGM)/poly(vinyl alcohol) (PVA) have been synthesized using electrospinning and used for sustained drug release. KGM was crosslinked with PVA to form a composite liquid
which was used as spinning solution to prepare KGM-PVA film by electrospinning. The drug release behavior of KGM-PVA nanofiber membrane was studied using 5-ASA as model drug. The microstructure of the composite nanofiber films was characterized by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR)
while the thermal properties were analyzed by differential scanning calorimeter (DSC). The sustained-release of the model drug from the nanofiber films was studied
in vitro
and with a mathematical model of drug release. It was observed that a uniform nanofiber with no node was synthesized when about 76% of KGM in the nanofibers film was used. Under this condition
thermal stability was enhanced as well. The structure characterization illustrated that the nanofiber membrane of the composite KGM-PVA was formed by stacking of the numerous nanofibers. Intermolecular reaction between KGM and PVA led to an enormous change in the structure and the function of the composite films in comparison with other KGM derived films. A relatively large specific surface area was formed during the formation of the network structure in the nanofiber film
which favored drug adsorption. The
in vitro
experiment results revealed that nanofiber film containing 5-aminosalicylic acid in PBS buffer of pH=7.4
performed well sustained-release and the cumulative release rate was about 45% after 25 h. The results also showed sustained-release from the nanofiber films was better fitted with Higuchi model. This study indicated that KGM/PVA nanofiber film developed by electro spinning provided a theoretical base for the development of the carrier for sustainable drug-release.
J Fu , X Y Lv , L Y Qiu . . RSC Adv , 2015 . 5 37451 - 37461 . DOI:10.1039/C5RA03105Bhttp://doi.org/10.1039/C5RA03105B.
Y Qiu , K Park . . Adv Drug Deliver Rev , 2012 . 64 49 - 60 . DOI:10.1016/j.addr.2012.09.024http://doi.org/10.1016/j.addr.2012.09.024.
G W Ashley , J Henise , R Reid , D V Santi . . P Natl Acad Sci USA , 2013 . 110 ( 6 ): 2318 - 2323 . DOI:10.1073/pnas.1215498110http://doi.org/10.1073/pnas.1215498110.
A Abbaszadeh , W MacNaughtan , G Sworn , T J Foster . . Carbohyd Polym , 2016 . 144 168 - 177 . DOI:10.1016/j.carbpol.2016.02.026http://doi.org/10.1016/j.carbpol.2016.02.026.
Silva D F da , Souza Ferreira S B de , M L Bruschi , M Britten , P T Matumoto-Pintro . . Food Hydrocolloid , 2016 . 60 308 - 316 . DOI:10.1016/j.foodhyd.2016.03.034http://doi.org/10.1016/j.foodhyd.2016.03.034.
X Li , F T Jiang , X W Ni , W L Yan , Y P Fang , H Corke , M Xiao . . Food Hydrocolloid , 2015 . 44 229 - 236 . DOI:10.1016/j.foodhyd.2014.09.027http://doi.org/10.1016/j.foodhyd.2014.09.027.
Y Y Chen , H Y Zhao , X W Liu , Z S Li , B Liu , J D Wu , M X Shi , W Norde , Y Li . . Carbohyd Polym , 2016 . 143 262 - 269 . DOI:10.1016/j.carbpol.2016.01.072http://doi.org/10.1016/j.carbpol.2016.01.072.
M Xiao , S H Dai , L Wang , X W Ni , W L Yan , Y P Fang , H Corke , F T Jiang . . Carbohyd Polym , 2015 . 130 1 - 8 . DOI:10.1016/j.carbpol.2015.05.001http://doi.org/10.1016/j.carbpol.2015.05.001.
X Q Wei , J Pang , C F Zhang , C C Yu , H Chen , B Q Xie . . Carbohyd Polym , 2015 . 118 119 - 125 . DOI:10.1016/j.carbpol.2014.11.009http://doi.org/10.1016/j.carbpol.2014.11.009.
X Y Long , J X Pan , LQ Yao . . Environ Prog Sustain , 2016 . 35 ( 4 ): 1149 - 1155 . DOI:10.1002/ep.v35.4http://doi.org/10.1002/ep.v35.4.
D Y Jia , Y Fang , K Yao . . Food Bioprod Process , 2009 . 87 ( 1 ): 7 - 10 . DOI:10.1016/j.fbp.2008.06.002http://doi.org/10.1016/j.fbp.2008.06.002.
B Li , J F Kennedy , Q G Jiang , B J Xie . . Food Res Int , 2006 . 39 ( 5 ): 544 - 549 . DOI:10.1016/j.foodres.2005.10.015http://doi.org/10.1016/j.foodres.2005.10.015.
X R Zhuo , X G Luo , X Y Lin , Y Chen , C G Xu . . Mater Sci Forum , 2008 . 569 353 - 356 . DOI:10.4028/www.scientific.net/MSF.569http://doi.org/10.4028/www.scientific.net/MSF.569.
S D Sadhu , A Soni , M Garg . . J Nanomedic Nanotechnol , 2015 . ( S7 ):- 002.
H J Jo , K M Park , J H Na , S C Min , K H Park , P S Chang , J Han . . J Stored Prod Res , 2015 . 61 114 - 118 . DOI:10.1016/j.jspr.2015.01.005http://doi.org/10.1016/j.jspr.2015.01.005.
S R Kanatt , M S Rao , S P Chawla , A Sharma . . Food Hydrocolloid , 2012 . 29 ( 2 ): 290 - 297 . DOI:10.1016/j.foodhyd.2012.03.005http://doi.org/10.1016/j.foodhyd.2012.03.005.
H Hezaveh , I I Muhamad . . Chem Eng Res Des , 2013 . 91 ( 3 ): 508 - 519 . DOI:10.1016/j.cherd.2012.08.014http://doi.org/10.1016/j.cherd.2012.08.014.
B Li , B J Xie . . J Appl Polym Sci , 2004 . 93 2775 - 2780 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
W Lin , Q Li , T Zhu . . Chem Eng Technol , 2012 . 35 ( 6 ): 1069 - 1076.
L L Yang , X Y Ma , N N Guo , Y Zhang . . J Inorg Organomet P , 2013 . 23 ( 6 ): 1459 DOI:10.1007/s10904-013-9950-6http://doi.org/10.1007/s10904-013-9950-6.