combination of living anionic polymerization with living cationic polymerization. The grafting density (
G
D
) along PBLG backbone in PBLG-
g
-(PTHF-
b
-PIB) graft-block copolymers was mediated by changing the molar ratio of living -PTHF-
b
-PIB chains to-NH-functional groups in PBLG backbone. The well-defined PBLG-
g
-(PTHF-
b
-PIB) copolymers with different grafting densities (
G
D
) (9%~65%) and different chain lengths (polymerization degree
DP
b
) (71.43~93.65) of -PTHF-
b
-PIB block segment branches were achieved. The chemical structure of the PBLG-
g
-(PTHF-
b
-PIB) copolymers was confirmed by FTIR
1
H-NMR and TGA characterization with grafting densities (
G
D
) ranging from 9% to 65%. Circular dichroism (CD) and FTIR spectra showed that some of the PBLG-
g
-(PTHF-
b
-PIB) copolymers maintained
α
-helical structure from PBLG. The effects of
G
D
and DP
b
of the -PTHF-
b
-PIB branches on the
T
g
PBLG
α
-helical secondary structure and enthalpy of
α
-helical transition of PBLG backbone were investigated by DSC. It has been found that the signal strength of
α
-helical secondary structure from the PBLG backbone gradually decreased while both
T
g
PBLG
and enthalpy of
α
-helical transition of PBLG backbone gradually increased with increasing
G
D
or DP
b
in the branches. The effect of DP
b
on confined crystallization of PTHF segments in the PBLG-
g
-(PTHF-
b
-PIB) copolymers was also investigated by changing molecular weight of PTHF segments while keeping the same molecular weights of the PBLG backbone and PIB segments in branches. It was observed that both the melting point of the crystalline from PTHF segments (
T
m
PTHF
) and its melting enthalpy increased with increasing the molecular weight of PTHF segments in branches. Moreover
it is also shown that the crystallization of PTHF segments in PBLG-
g
-(PTHF-
b
-PIB) copolymers was obviously weakened by increasing the grafting density (
G
D
) from 9% to 45% by keeping the same molecular weights of PBLG backbone and PIB segments in branches.
W X Yang , L L Wang , H Zhu , R W Xu , Y X Wu . . Chinese J Polym Sci , 2013 . 31 ( 12 ): 1706 - 1716 . DOI:10.1007/s10118-013-1363-zhttp://doi.org/10.1007/s10118-013-1363-z.
J P Lin , N Liu , J D Chen , D F Zhou . . Polymer , 2000 . 41 6189 - 6194 . DOI:10.1016/S0032-3861(99)00848-4http://doi.org/10.1016/S0032-3861(99)00848-4.
Y C Tang , L Liu , J H Wu , J X Duan . . J. Colloid Interface Sci , 2013 . 397 24 - 31 . DOI:10.1016/j.jcis.2013.01.018http://doi.org/10.1016/j.jcis.2013.01.018.
T Li , J P Lin , T Chen , S N Zhang . . Polymer , 2006 . 47 4485 - 4489 . DOI:10.1016/j.polymer.2006.04.011http://doi.org/10.1016/j.polymer.2006.04.011.
J P Lin , G Q Zhu , X M Zhu , S L Lin , T Nose , W W Ding . . Polymer , 2008 . 49 1132 - 1136 . DOI:10.1016/j.polymer.2008.01.021http://doi.org/10.1016/j.polymer.2008.01.021.
J Babin , D Taton , M Brinkmann , S Lecommandoux . . Macromolecules , 2008 . 41 1384 - 1392 . DOI:10.1021/ma702071yhttp://doi.org/10.1021/ma702071y.
L Rubatat , X X Kong , S A Jenekhe , J Ruokolainen , M Hojeij , R Mezzenga . . Macromolecules , 2008 . 41 1846 - 1852 . DOI:10.1021/ma702278ahttp://doi.org/10.1021/ma702278a.
Suning Zhang , Tao Chen , Jiaping Lin , Shaoliang Lin , changsheng Liu , Dongmei Tang , Xiaohui Tian . . Polym Bull Sinica , 2004 . ( 3 ): 19 - 28.
K Hirabayashi , M Nishikawa , Y Takaura , M Hashida . . Pharm Res , 1996 . 13 ( 6 ): 880 - 884 . DOI:10.1023/A:1016053128569http://doi.org/10.1023/A:1016053128569.
K Hoste , E Schacht , L Seymour . . J Controlled Release , 2000 . 64 53 - 61 . DOI:10.1016/S0168-3659(99)00142-Xhttp://doi.org/10.1016/S0168-3659(99)00142-X.
Y Anraku , A Kishimura , M Oba , Y Yamasaki , K Kataoka . . J Am Chem Soc , 2010 . 132 1631 - 1636 . DOI:10.1021/ja908350ehttp://doi.org/10.1021/ja908350e.
D M Tang , J P Lin , S L Lin , S N Zhang , T Chen , X H Tian . . Macromol Rapid Commun , 2004 . 25 1241 - 1246 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
Xu Xu , Guolin Wu , Jie Zhang , Yinong Wang , Yunge Fan , Jianbiao Ma . . Acta Chimca Sinica , 2008 . 66 ( 9 ): 1102 - 1106.
Y Jeong , J H Nah , S Kim . . Intern J Pharmac , 1999 . 188 ( 1 ): 49 - 58 . DOI:10.1016/S0378-5173(99)00202-1http://doi.org/10.1016/S0378-5173(99)00202-1.
A R Guo , W X Yang , F Yang , R Yu , Y X Wu . . Macromolecules , 2014 . 47 5450 - 5461 . DOI:10.1021/ma501060yhttp://doi.org/10.1021/ma501060y.
D M Tang , J P Lin , S L Lin , S N Zhang , T Chen , X H Tian . . Macromol Rapid Commun , 2004 . 25 1241 - 1246 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
C G Mu , X D Fan , W Tian , Y Bai , Z Yang , W W Fan , H Chen . . Polym Chem , 2012 . 3 3330 - 3339 . DOI:10.1039/c2py20586fhttp://doi.org/10.1039/c2py20586f.
A R Guo , F Yang , R Yu , Y X Wu . . Chinese J Polym Sci , 2015 . 33 ( 1 ): 23 - 35 . DOI:10.1007/s10118-015-1571-9http://doi.org/10.1007/s10118-015-1571-9.
H Cheradame , M Sassatelli , C Pomel , A Sanh , J Gau-Racine , L Bacri , L Auvray , P Guegan . . Macromol Symp , 2008 . 261 167 - 181 . DOI:10.1002/(ISSN)1521-3900http://doi.org/10.1002/(ISSN)1521-3900.
L L Rueda , B F D'Arlas , A Tercjak . . Eur Polym J , 2009 . 45 ( 7 ): 2096 - 2109 . DOI:10.1016/j.eurpolymj.2009.03.013http://doi.org/10.1016/j.eurpolymj.2009.03.013.
E J Goethals , M F Dubreuil , L Tanghe . . Macromol Symp , 2000 . 161 135 - 140 . DOI:10.1002/(ISSN)1521-3900http://doi.org/10.1002/(ISSN)1521-3900.
K Matyjaszewski . Cationic Polymerization, Synthesis and Applications , : New York Marcel Dekker , 1996 . 137 - 138.
Tao Lin , Yixian Wu , Xiaolin Ye . . Acta Polymerica Sinica , 2008 . ( 2 ): 129 - 135 . http://www.gfzxb.org/CN/abstract/abstract9058.shtml.
L L Wang , Y X Wu , R W Xu , G Y Wu , W T Yang . . Chinese J Polym Sci , 2008 . 26 ( 4 ): 381 - 391 . DOI:10.1142/S0256767908003047http://doi.org/10.1142/S0256767908003047.
Y C Lin , S W Kuo . . J Polym Sci, Part A:Polym Chem , 2011 . 49 ( 10 ): 2127 - 2137 . DOI:10.1002/pola.24640http://doi.org/10.1002/pola.24640.
W H Daly , D Poché . . Tetrahedron Lett , 1988 . 29 5859 - 5862 . DOI:10.1016/S0040-4039(00)82209-1http://doi.org/10.1016/S0040-4039(00)82209-1.
U Ojha , R Rajkhowa , S R Agnihotra . . Macromolecules , 2008 . 41 ( 11 ): 3832 - 3841 . DOI:10.1021/ma7027209http://doi.org/10.1021/ma7027209.
P F Yan , A R Guo , Q Liu , Y X Wu . . J Polym Sci, Part A:Polym Chem , 2012 . 50 ( 16 ): 3383 - 3392 . DOI:10.1002/pola.v50.16http://doi.org/10.1002/pola.v50.16.
A Ushiyama , H Furuya , A Abe , T Yamazaki . . Polym J , 2002 . 34 450 - 454 . DOI:10.1295/polymj.34.450http://doi.org/10.1295/polymj.34.450.
A J Adler , R Hoving , J Potter , M Wells , G D Fasman . . J Am Chem Soc , 1968 . 90 4736 - 4738 . DOI:10.1021/ja01019a045http://doi.org/10.1021/ja01019a045.
Y P Myer . . Macromolecules , 1969 . 2 624 - 628 . DOI:10.1021/ma60012a012http://doi.org/10.1021/ma60012a012.
S Lecommandoux , M F Achard , J F Langenwalter , H A Klok . . Macromolecules , 2001 . 34 9100 - 9111 . DOI:10.1021/ma010940jhttp://doi.org/10.1021/ma010940j.
Synthesis and Property of Novel Functionalized Polytetrahydrofuran-b-polyisobutylene-b-polytetrahydrofuran Triblock Copolymers
In situ Synthesis and Characterization of Chitosan-g-polytetrahydrofuran Graft Copolymer/Ag Nanocomposite via Living Cationic Polymerization
Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach
Synthesis and Properties of Polyisobutylene-based Thermoplastic Elastomer
Synthesis and Properties of Polystyrene-g-Poly(2-ethyl-2-oxazoline) Amphiphilic Graft Copolymers
Related Author
No data
Related Institution
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing Laboratory of Biomedical Materials
State Key Laboratory of Chemical Resources Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology
State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology