-trimethylene carbonate) (PDT) were prepared by electrospinning technique. Their physicochemical and biological properties were evaluated with the standards for biomedical materials
and it was found that the content of trimethylene carbonate (TMC) units in PDT copolymer could change these properties. As observed by the scanning electron microscopy (SEM)
more TMC units in the copolymer would lead to severer fiber bonding
which probably is due to the ductility of TMC segments. The results of static water contact angle testing for the electrospun membranes demonstrated that the hydrophilicity of PDT was between that of PPDO and PTMC. The growth status of L929 mouse fibroblasts on the as-spun membranes of PDT and PPDO was evaluated by the fluorescent micrographs and MTT assay. It was shown that the cells grew well
which suggested good biocompatibility of these copolymers and their suitability in biomedical fields. The
in vitro
biodegradability of the electrospun membranes in phosphate buffered saline (PBS) and PBS with lipase was separately investigated
via
measurements of mass loss
M
w
retention
as well as variations in crystallinity
thermal properties
pH value
and morphology. After 35 days of degradation
mass and
M
w
of the polymers significantly reduced while slight differences appeared in pH values before and after. Among the samples
the pH value exhibited the most descent for PBS with PPDO and the least for PBS with PTMC; pH decrement of PBS with PDT was in the middle. These results pointed out that the existence of TMC units in the polymers reduced acidic products in the degradation process
which was good for implanted materials. The changes of SEM images of PTMC at different degradation time indicated that PTMC degraded by surface erosion. And the changes of thermal properties of PDT indicated that PTMC was susceptible to enzymatic degradation by lipase. The lipase enzymatic degradation rate of the polymers containing TMC segments was faster than the hydrolytic degradation rate
Y Yuan , S D Ding , Y Q Zhao , Y Z Wang . Chinese J Polym Sci , 2014 . 32 ( 12 ): 1678 - 1689 . DOI:10.1007/s10118-014-1545-3http://doi.org/10.1007/s10118-014-1545-3.
R B Cady , J A Siegel , G Mathien , J A Spadaro , S E Chase . J Biomed Mater Res , 1999 . 48 ( 3 ): 211 - 215 . DOI:10.1002/(ISSN)1097-4636http://doi.org/10.1002/(ISSN)1097-4636.
S L Ishaug-Riley , L E Okun , G Prado , M A Applegate , A Ratcliffe . Biomaterials , 1999 . 20 ( 23-24 ): 2245 - 2256 . DOI:10.1016/S0142-9612(99)00155-6http://doi.org/10.1016/S0142-9612(99)00155-6.
C X Song , X M Cui , A Schindler . Med Biol Eng Comput , 1993 . 31 ( 1 ): S147 - S151.
A P T Pezzin , E A R Duek . Polym Degrad Stabil , 2002 . 78 405 - 411 . DOI:10.1016/S0141-3910(02)00174-Xhttp://doi.org/10.1016/S0141-3910(02)00174-X.
A Adamus , R A Wach , A K Olejnik , J Dzierzawska , J M Rosiak . Polym Degrad Stabil , 2012 . 97 ( 4 ): 532 - 540 . DOI:10.1016/j.polymdegradstab.2012.01.021http://doi.org/10.1016/j.polymdegradstab.2012.01.021.
S Schüller-Ravoo , S M Teixeira , J Feijen , D W Grijpma , A A Poot . Macromol Biosci , 2013 . 13 ( 12 ): 1711 - 1719 . DOI:10.1002/mabi.201300399http://doi.org/10.1002/mabi.201300399.
W Guerin , M Helou , J F Carpentier , M Slawinski , J M Brusson , S M Guillaume . Polym Chem , 2012 . 4 ( 4 ): 1095 - 1106.
J Wang , Y He , M F Maitz , B Collins , K Xiong , L Guo , Y Yun , G Wan , N Huang . Acta Biomaterialia , 2013 . 9 ( 10 ): 8678 - 8689 . DOI:10.1016/j.actbio.2013.02.041http://doi.org/10.1016/j.actbio.2013.02.041.
M C Vyner , A Li , B G Amsden . Biomaterials , 2014 . 35 ( 33 ): 9041 - 9048 . DOI:10.1016/j.biomaterials.2014.07.023http://doi.org/10.1016/j.biomaterials.2014.07.023.
J T Dong , L Liao , Y Ma , L Shi , G X Wang , Z Y Fan , S M Li , Z Q Lu . Polym Degrad Stabil , 2014 . 103 ( 1 ): 26 - 34.
K J Zhu , R W Hendren , K Jensen , C G Pitt . Macromolecules , 2002 . 24 ( 8 ): 1736 - 1740.
H Wang , J H Dong , K Y Qiu , Z W Gu . J Polym Sci, Part A: Polym Chem , 1998 . 36 ( 8 ): 1301 - 1307 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
Bin Ding , Jianyong Yu . Electrospinning and Nanofibers , : Beijing China Textile & Apparel Press , 2011 . 1 - 7.
G Huang , F C Dong , J H Wang , Y T Jia . Polym Degrad Stabil , 2012 . 97 ( 6 ): 1067 - 1073 . DOI:10.1016/j.polymdegradstab.2012.02.004http://doi.org/10.1016/j.polymdegradstab.2012.02.004.
S M Davachi , B Kaffashi , J M Roushandeh , B Torabinejad . Mater Sci Eng C , 2012 . 32 ( 2 ): 98 - 104 . DOI:10.1016/j.msec.2011.10.001http://doi.org/10.1016/j.msec.2011.10.001.
Y L Li , S Li , L J Ji , B He , Z W Gu . Chinese J Polym Sci , 2013 . 31 ( 7 ): 966 - 973 . DOI:10.1007/s10118-013-1299-3http://doi.org/10.1007/s10118-013-1299-3.
S C Chen , X L Wang , Y Z Wang , K K Yang , Z X Zhou , G Wu . J Biomed Mater Res A , 2007 . 80 ( 2 ): 453 - 465.
Effects of Dibenzocrown Ether and Diphenoxyethylene Diether Structural Units on the Properties of Degradable Polyhexahydrotriazine Thermosetting Resins
Metathetic Degradation of Polybutadiene and Formation of Telechelic Oligomers via Cross Metathesis
Preparation and Drug Release Behavior of Ethyl Cellulose-g-Polycaprolactone Drug Delivery Films
Effect of Lysine on Regulating Acidity of PLGA Nanofiber Degradation in vitro
Related Author
No data
Related Institution
School of Materials and Environment
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products
School of Chemistry and Chemical Engineering, Guangxi University for Nationalities
Green Polymer and Catalysis Technology Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
Anhui Province Key Laboratory of Environment-friendly Polymer Materials, College of Chemistry and Chemical Engineering, Anhui University