浏览全部资源
扫码关注微信
清华大学化工系 先进材料教育部重点实验室 北京 100084
Published:2017-3,
Received:4 May 2016,
Revised:13 June 2016,
扫 描 看 全 文
Shi Fu-kuan, Zhong Ming, Zhang Li-qin, Liu Xiao-ying, Xie Xu-ming. Preparation of Hierachically Crosslinked Poly (acrylamide) Hydrogels by Assistance of Crystallization of Poly (vinyl alcohol). [J]. Acta Polymerica Sinica (3):491-497(2017)
Shi Fu-kuan, Zhong Ming, Zhang Li-qin, Liu Xiao-ying, Xie Xu-ming. Preparation of Hierachically Crosslinked Poly (acrylamide) Hydrogels by Assistance of Crystallization of Poly (vinyl alcohol). [J]. Acta Polymerica Sinica (3):491-497(2017) DOI: 10.11777/j.issn1000-3304.2017.16162.
在表面带有C=C双键的乙烯基杂化二氧化硅纳米颗粒(vinyl hybrid silica nanoparticle,VSNP)上接枝丙烯酰胺(AM),所得到的纳米刷状凝胶因子通过聚丙烯酰胺(PAM)间的氢键形成物理交联点,则多官能化的VSNP可作为拟共价交联点构筑双重交联的单一网络纳米复合物理水凝胶(nanocomposite physical hydrogel,NCP gel),表现出较高的强度和超拉伸性.为了进一步提高凝胶的强度和韧性,将少量PVA和PAM/VSNP纳米刷混合制成凝胶,通过冷冻-融化处理,使与PAM分子链相互缠绕并形成氢键作用的PVA结晶,形成新的交联点进一步交联PAM NCP gel,得到多交联的PAM NCP gel体系.通过拉曼光谱和示差扫描量热分析,证明凝胶中的PVA通过氢键既可以与PAM相互作用,又形成微晶为新交联点,大大增强了NCP gel的力学性能,与PAM NCP gel相比,凝胶的拉伸强度和断裂能分别从313 kPa和1.41×10
4
J/m
2
提高到了557 kPa和4.65×10
4
J/m
2
.
The grafting polymerization of acrylamide (AM) on the surface of vinyl hybrid silica nanoparticles (VSNPs) leads to the formation of nanobrush gelators. The gelators can link with each other by the hydrogen bond among the grafted polyacrylamide (PAM) chains as physical crosslinking points
and thus the multifunctional VSNPs as analogous covalent crosslinking points to construct dually crosslinked single network nanocomposite under the form of physical hydrogels (NCP gels)
which exhibit high strength and super stretchability. Under stretching
the hydrogen bonds in the PAM NCP gel could dissipate energy and homogenize the network by their break and recombination process; VSNPs could retain the original configuration of the gel and work as transferring centers to homogenize the stress distribution in the gel network. As a result
the synergy of the dual crosslinking points ensures the PAM NCP gel to exhibit high strength and super stretchability. Polyvinylalcohol (PVA) is hydrophilic and compatible with PAM. PVA could physically interact with PAM by forming hydrogen bonds and also crystallize after freezing-thawing (FT) process. To further improve the strength and toughness of the NCP gels
the mixtures of PVA and the PAM/VSNP gelators are prepared and then treated by FT process. Thus PVA interacted with the grafted PAM chains could form micro-crystals
playing the role of new junction points to crosslink further the gel network. Thereby hierachically crosslinked PAM NCP gels are obtained. According to the characterization of Raman spectra and DSC
it is verified that PVA could form micro-crystal and interact with PAM by hydrogen bond
leading to toughen NCP gel network. Compared to the PAM NCP gel
the PVA/PAM NCP gels exhibit greatly improved mechanical properties due to the enhanced synergy of the hierachical crosslinking points. The tensile strength and fracture energy of the gels are enhanced from 313 kPa to 557 kPa and from 1.41×10
4
J/m
2
to 4.65×10
4
J/m
2
respectively.
聚乙烯醇微晶多重交联高强度聚丙烯酰胺水凝胶
PolyvinylalcoholMicro-crystalHierarchical crosslinkingHigh strengthPoly(acrylamide) hydrogel
N B Graham , M E McNeill . . Biomaterials , 1984 . 5 27 - 36 . DOI:10.1016/0142-9612(84)90063-2http://doi.org/10.1016/0142-9612(84)90063-2.
A S Hoffman . . Adv Drug Del Rev , 2012 . 64 18 - 23 . DOI:10.1016/j.addr.2012.09.010http://doi.org/10.1016/j.addr.2012.09.010.
Y Huang , M Zhong , Y Huang , M S Zhu , Z X Pei , Z F Wang , Q Xue , X M Xie , C Y Zhi . . Nat Commun , 2015 . 6 10310 DOI:10.1038/ncomms10310http://doi.org/10.1038/ncomms10310.
X J Liu , Y M Zhang , X S Li . . Chinese J Polym Sci , 2015 . 33 1741 - 1749 . DOI:10.1007/s10118-015-1717-9http://doi.org/10.1007/s10118-015-1717-9.
W Zeng , W K Hu , H Li , Y H Jing , H Kang , Q Jiang , C Zhang . . Chinese J Polym Sci , 2014 . 32 1507 - 1514 . DOI:10.1007/s10118-014-1536-4http://doi.org/10.1007/s10118-014-1536-4.
K Haraguchi , T Takehisa , S Fan . . Macromolecules , 2002 . 35 10162 - 10171 . DOI:10.1021/ma021301rhttp://doi.org/10.1021/ma021301r.
Y Okumura , K Ito . . Adv Mater , 2001 . 13 485 - 487 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
T Sakai , T Matsunaga , Y Yamamoto , C Ito , R Yoshida , S Suzuki , N Sasaki , M Shibayama , U I Chung . . Macromolecules , 2008 . 41 5379 - 5384 . DOI:10.1021/ma800476xhttp://doi.org/10.1021/ma800476x.
T Huang , H G Xu , K X Jiao , L P Zhu , H R Brown , H L Wang . . Adv Mater , 2007 . 19 1622 - 1626 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
G Jiang , C Liu , X Liu , Q Chen , G Zhang , M Yang , F Liu . . Polymer , 2010 . 51 1507 - 1515 . DOI:10.1016/j.polymer.2010.01.061http://doi.org/10.1016/j.polymer.2010.01.061.
K Haraguchi , T Takehisa . . Adv Mater , 2002 . 14 1120 - 1124 . DOI:10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9http://doi.org/10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9.
Y Liu , M Zhu , X Liu , W Zhang , B Sun , Y Chen , H J P Adler . . Polymer , 2006 . 47 1 - 5 . DOI:10.1016/j.polymer.2005.11.030http://doi.org/10.1016/j.polymer.2005.11.030.
Q Wang , R Hou , Y Cheng , J Fu . . Soft Matter , 2012 . 8 6048 - 6056 . DOI:10.1039/c2sm07233ehttp://doi.org/10.1039/c2sm07233e.
J P Gong , Y Katsuyama , T Kurokawa , Y Osada . . Adv Mater , 2003 . 15 1155 - 1158 . DOI:10.1002/adma.200304907http://doi.org/10.1002/adma.200304907.
Q Chen , H Chen , L Zhu , J Zheng , J . . Mater Chem B , 2015 . 3 3654 - 3676 . DOI:10.1039/C5TB00123Dhttp://doi.org/10.1039/C5TB00123D.
Q Chen , L Zhu , H Chen , H L Yan , L N Huang , J Yang , J Zheng . . Adv Funct Mater , 2015 . 25 1598 - 1607 . DOI:10.1002/adfm.201404357http://doi.org/10.1002/adfm.201404357.
M Zhong , Y T Liu , X M Xie . . J Mater Chem B , 2015 . 3 4001 - 4008 . DOI:10.1039/C5TB00075Khttp://doi.org/10.1039/C5TB00075K.
J Li , Z Suo , J J Vlassak . . J Mater Chem B , 2014 . 2 6708 - 6713.
F K Shi , X P Wang , R H Guo , M Zhong , X M Xie . . J Mater Chem B , 2015 . 3 1187 - 1192 . DOI:10.1039/C4TB01654Hhttp://doi.org/10.1039/C4TB01654H.
J Yang , C Gong , F K Shi , X M Xie . . J Phys Chem B , 2012 . 116 12038 - 12047 . DOI:10.1021/jp303710dhttp://doi.org/10.1021/jp303710d.
J Yang , F K Shi , C Gong , X M Xie . . J Colloid Interface Sci , 2012 . 381 107 - 115 . DOI:10.1016/j.jcis.2012.05.046http://doi.org/10.1016/j.jcis.2012.05.046.
J Yang , X P Wang , X M Xie . . Soft Matter , 2012 . 8 1058 - 1063 . DOI:10.1039/C1SM06647Ahttp://doi.org/10.1039/C1SM06647A.
M Zhong , F K Shi , Y T Liu , X Y Liu , X M Xie . . Chin Chem Lett , 2016 . 27 312 - 316 . DOI:10.1016/j.cclet.2015.12.020http://doi.org/10.1016/j.cclet.2015.12.020.
M Zhong , Y T Liu , X Y Liu Liu , F K Shi , L Q Zhang Zhang , X M Xie . . Soft Matter , 2016 . DOI:10.1039/C6SM00242Khttp://doi.org/10.1039/C6SM00242K .
H M N El-din , A W M El-Naggar , F I Ali . . Polym Int , 2003 . 52 225 - 234 . DOI:10.1002/(ISSN)1097-0126http://doi.org/10.1002/(ISSN)1097-0126.
U Fumio , Y Hiroshi , N Kumiko , N Sachihiko , S Kenji , M Yasunori . . Int J Pharm , 1990 . 58 135 - 142 . DOI:10.1016/0378-5173(90)90251-Xhttp://doi.org/10.1016/0378-5173(90)90251-X.
Wendi Li , Jianhua Rong , Zhidan Lin , Chuanjie Zhang , Zhengtao Ye , Ping Zhu . . Acta Polymerica Sinica , 2012 . ( 3 ): 357 - 364.
李 文迪 , 荣 建华 , 林 志丹 , 张 传杰 , 叶 正涛 , 朱 平 . . 高分子学报 , 2012 . 3 357 - 364.
J Y Sun , X H Zhao , W R K Illeperuma , O Chaudhuri , K H Oh , D J Mooney , J J Vlassak , Z G Suo . . Nature , 2012 . 489 133 - 136 . DOI:10.1038/nature11409http://doi.org/10.1038/nature11409.
S Katayama , S Fujiwara . . J Phys Chem , 1980 . 84 2320 - 2325 . DOI:10.1021/j100455a022http://doi.org/10.1021/j100455a022.
M K Gupta , R Bansil . . J Polym Sci, Polym Phys Ed , 1981 . 19 353 - 360 . DOI:10.1002/pol.1981.180190214http://doi.org/10.1002/pol.1981.180190214.
0
Views
41
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution