To make up for the limited mechanical strength of polyurethane (TPU) material
carbon nanotube (CNT) and graphene (G) were added as reinforced phase into TPU matrix. The mechanical property of this CNT-G/TPU nanocomposite as well as its self-healing property under microwave processing were studied. Firstly
the solution mixing method was adopted to prepare the polyurethane nano-composite filled with carbon nanotube and graphene. Then the mechanical property of this G-CNT/TPU nanocomposite was investigated by tensile testing. Mechanics principle analysis and scanning electron microscopy (SEM) were used to study the mechanisms of mechanical enhancement of this material. Secondly
self-healing property of these nanocomposites under microwave electromagnetic fields was also studied through the crack-repair processing
tensile testing and SEM characterization. Moreover
the mechanisms of both mechanical enhancement and self-healing under microwave radiation were studied. The results indicated that
in terms of mechanical properties
there was synergetic reinforcement effect between the graphene and CNT
which could further improve the mechanical performance of G-CNT/TPU nanocomposites when compared with the samples that were only reinforced with CNT or grapheme. With the ratio of graphene to CNT at 3:1
the mechanical properties of G-CNT/TPU composites reached the optimum value of 70.6 MPa. The tensile strength of G-CNT/TPU composites increased by 67% when compared with that of pure TPU materials
by 18% when compared with that of G/TPU composites
and increased by 25% when compared with that of CNT/TPU composites. In term of the self-healing of cracks in the material under microwave radiation
the results showed that these G-CNT/TPU composites could be healed effectively and rapidly by microwave electromagnetic radiation. Besides
it was shown that the self-healing efficiency could be further improved by the synergy effect between graphene and CNT. With the ratio of graphene to CNT at 3:1
the self-healing of G-CNT/TPU composite reached the best result
M Valentini , F Piana , J Pionteck , F R Lamastra , F Nanni . Compos Sci Technol , 2015 . 114 26 - 33 . DOI:10.1016/j.compscitech.2015.03.006http://doi.org/10.1016/j.compscitech.2015.03.006.
L Kong , X Yin , X Yuan , Y Zhang , X Liu , L Cheng , L Zhang . Carbon , 2014 . 73 185 - 193 . DOI:10.1016/j.carbon.2014.02.054http://doi.org/10.1016/j.carbon.2014.02.054.
L Huang , N Yi , Y Wu , Y Zhang , Q Zhang , Y Huang , Y Ma , Y Chen . Adv Mater , 2013 . 25 ( 15 ): 2224 - 2228 . DOI:10.1002/adma.201204768http://doi.org/10.1002/adma.201204768.
M M J Treacy , T W Ebbesen , J M Gibson . Nature , 1996 . 381 ( 6584 ): 678 - 680 . DOI:10.1038/381678a0http://doi.org/10.1038/381678a0.
Y Feng , M Qin , H Guo , K Yoshino , W Feng . ACS Appl Mater Inter , 2013 . 5 ( 21 ): 10882 - 10888 . DOI:10.1021/am403071khttp://doi.org/10.1021/am403071k.
D Yuan , S Chen , R Yuan , J Zhang , W Zhang . Analyst , 2013 . 138 ( 20 ): 6001 - 6006 . DOI:10.1039/c3an01031ghttp://doi.org/10.1039/c3an01031g.
Y Hu , X Li , J Wang , R Li , X Sun . J Power Sources , 2013 . 237 41 - 46 . DOI:10.1016/j.jpowsour.2013.02.065http://doi.org/10.1016/j.jpowsour.2013.02.065.
F Du , D Yu , L Dai , S Ganguli , V Varshny , A K Roy . Chem Mater , 2011 . 23 ( 21 ): 4810 - 4816 . DOI:10.1021/cm2021214http://doi.org/10.1021/cm2021214.
T Odedairo , J Ma , Y Gu , J Chen , X S Zhao , Z Zhu . J Mater Chem A , 2014 . 2 ( 5 ): 1418 - 1428 . DOI:10.1039/C3TA13871Bhttp://doi.org/10.1039/C3TA13871B.
S Roy , S K Srivastava , J Pionteck , V Mittal . Macromol Mater Eng , 2015 . 300 ( 3 ): 346 - 357 . DOI:10.1002/mame.201400291http://doi.org/10.1002/mame.201400291.
X Fang , Z Yang , L Qiu , H Sun , S Pan , J Deng , Y Luo , H Peng . Adv Mater , 2014 . 26 ( 11 ): 1694 - 1698 . DOI:10.1002/adma.201305241http://doi.org/10.1002/adma.201305241.
Z Yang , M Liu , C Zhang , W W Tjiu , T Liu , H Peng . Angew Chem Int Ed , 2013 . 52 ( 14 ): 3996 - 3999 . DOI:10.1002/anie.v52.14http://doi.org/10.1002/anie.v52.14.
K H Tan , R Ahmad , M R Johan . Mater Chem Phys , 2013 . 139 ( 1 ): 66 - 72 . DOI:10.1016/j.matchemphys.2012.12.006http://doi.org/10.1016/j.matchemphys.2012.12.006.
D J Yang , Q Zhang , G Chen , S F Yoon , J Ann , S G Wang , Q Zhou , Q Wang , J Q Li . Phys Rev B , 2002 . 66 ( 16 ): 165441 - 165446 . DOI:10.1103/PhysRevB.66.165441http://doi.org/10.1103/PhysRevB.66.165441.
Shaonan Cui , Peng Zhang , Yalin Zhang , Na Sun , Yanling Hou . Acta Polymerica Sinica , 2015 . ( 12 ): 1443 - 1448 . http://www.gfzxb.org/CN/abstract/abstract14385.shtml.
J Kwon , H Kim . J Polym Sci Part A Polym Chem , 2005 . 43 ( 17 ): 3973 - 3985 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
K K Sadasivuni , D Ponnamma , B Kumar , M Strankowski , R Cardinaels , P Moldenaers , S Thomas , Y Grohens . Compos Sci Technol , 2014 . 104 18 - 25 . DOI:10.1016/j.compscitech.2014.08.025http://doi.org/10.1016/j.compscitech.2014.08.025.
S Liu , M Tian , B Yan , Y Yao , L Zhang , T Nishi , N Ning . Polymer , 2015 . 56 375 - 384 . DOI:10.1016/j.polymer.2014.11.012http://doi.org/10.1016/j.polymer.2014.11.012.
Zhenlong Gu . Duanxianwei Fuhecailiao Lixue , 1st ed : Beijing National Defence Industry Press , 1987 . 97 - 149.