The polyhedral oligomeric silsesquioxane (POSS) based fluorinated acrylate copolymer was successfully synthesized
via
free radical solution polymerization
which was confirmed by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). POSS and fluorinated monomers were separately introduced into the reaction. The copolymer solution was firstly prepared by dissolving the copolymer in a solvent mixture of 1
1
2-trichlorotrifluoroethane (F113) and ethyl acetate (EA). The copolymer film was then fabricated by simply drop-casting one layer of the solution on glass substrate. The influence of the volume ratio of EA to F113 on the microstructure morphology
element component
roughness and hydrophobicity of the film surface were investigated by scanning electron microscope (SEM)
X-ray photoelectron spectroscopy (XPS)
atomic force microscope (AFM) and contact angle instrument. The experimental results revealed that POSS aggregated on the top of the film and formed nanoscale particles
which led to rough film surface withgreat hydrophobicity. The complex and rough structure was simply fabricated due to the effect of both POSS aggregation and organic microphase separation between the fluorinated and non-fluorinated segments. Although fluorinated segments and POSS were competed to migrate onto the film surface
the content of POSS aggregation on the surface would decrease alone with the increase of F113 in the solvent mixture
while fluorine content was contrary to that. Consequently
both the surface roughness and surface energy decreased. The phenomenon suggested that F113 was helpful for fluorinated segments to migrate onto the film surface
which ensured much more room for fluorinated parts on the surface and reasonably restrained the capability of POSS aggregation on the surface. The hydrophobicity of the film increased with the content of F113. With pure F113 as the solvent
the contact angle of the film formed increased to the maximum of 135.0°
demonstrating well-performed hydrophobicity. At the same time
the fluorine content and average roughness of the film surface were 45.25% and 93.4 nm
S W Kuo , F C Chang . Prog Polym Sci , 2011 . 36 ( 12 ): 1649 - 1696 . DOI:10.1016/j.progpolymsci.2011.05.002http://doi.org/10.1016/j.progpolymsci.2011.05.002.
D B Cordes , P D Lickiss , F Rataboul . Chem Rev , 2010 . 110 ( 4 ): 2081 - 2173 . DOI:10.1021/cr900201rhttp://doi.org/10.1021/cr900201r.
B Yu , X Jiang , N Qin , J Yin . Chem Commun , 2011 . 47 ( 44 ): 12110 - 12112 . DOI:10.1039/c1cc15252ahttp://doi.org/10.1039/c1cc15252a.
G Cardoen , E B Coughlin . Macromolecules , 2004 . 37 ( 13 ): 5123 - 5126 . DOI:10.1021/ma049769chttp://doi.org/10.1021/ma049769c.
K Tanaka , Y Chujo . J Mater Chem , 2012 . 22 ( 5 ): 1733 - 1746 . DOI:10.1039/C1JM14231Chttp://doi.org/10.1039/C1JM14231C.
F Mammeri , C Bonhomme , F Ribot , F Babonneau , S Diret . Chem Mater , 2009 . 21 ( 18 ): 4163 - 4171 . DOI:10.1021/cm900339hhttp://doi.org/10.1021/cm900339h.
Y H Xue , H X Wang , D S Yu , L F Feng , L M Dai , X G Wang , T Lin . Chem Commun , 2009 . ( 42 ): 6418 - 6420 . DOI:10.1039/b911509ahttp://doi.org/10.1039/b911509a.
B H Tan , H Hussain , C B He . Macromolecules , 2011 . 44 ( 3 ): 622 - 631 . DOI:10.1021/ma102510uhttp://doi.org/10.1021/ma102510u.
A G Kannan , N R Choudhury , N Dutta . ACS Appl Mater Interfaces , 2009 . 1 ( 2 ): 336 - 347 . DOI:10.1021/am800056phttp://doi.org/10.1021/am800056p.
S M Ramirez , Y J Diaz , C M Sahagun , M W Duff , O B Lawal , S T Iaconoc , J M Marbry . Polym Chem , 2013 . 4 ( 7 ): 2230 - 2234 . DOI:10.1039/c3py00018dhttp://doi.org/10.1039/c3py00018d.
S Yang , A Z Pan , L He . J Colloid Interface Sci , 2014 . 425 5 - 11 . DOI:10.1016/j.jcis.2014.03.027http://doi.org/10.1016/j.jcis.2014.03.027.
V A Ganesh , A S Nair , H K Raut , H K Raut , T T Y Tan , C B He , S Ramakrishna , J W Xu . J Mater Chem , 2012 . 22 ( 35 ): 18479 - 18485 . DOI:10.1039/c2jm33088ahttp://doi.org/10.1039/c2jm33088a.
R N Wenzel . Ind Eng Chem , 1936 . 28 ( 8 ): 988 - 994 . DOI:10.1021/ie50320a024http://doi.org/10.1021/ie50320a024.
A B D Cassie , S Baxter . Trans Faraday Soc , 1944 . 40 546 - 551 . DOI:10.1039/tf9444000546http://doi.org/10.1039/tf9444000546.
X F Wen , C Ye , Z Q Cai , S P Xu , P H Pi , J Cheng , L J Zhang , Y Qian . Appl Surf Sci , 2015 . 339 109 - 115 . DOI:10.1016/j.apsusc.2015.02.077http://doi.org/10.1016/j.apsusc.2015.02.077.
T Hirai , M Leolukman , S Jin , R Goseki , Y Ishida , M Kakimoto , T Hayakawa , M Ree , P Gopalan . Macromolecules , 2009 . 42 ( 22 ): 8835 - 8843 . DOI:10.1021/ma9018944http://doi.org/10.1021/ma9018944.
H J Jeong , D K Kim , S B Lee , S H Kwon , K Kadono . J Colloid Interface Sci , 2010 . 235 ( 1 ): 130 - 134.
C T Hsieh , J M Chen , R R Kuo , T S Lin , C F Wu . Appl Surf Sci , 2005 . 240 ( 1 ): 318 - 326.
K Y May , E M J Lin , C S Gudipati , L Shen , C He . J Phys Chem B , 2010 . 114 ( 28 ): 9119 - 9127 . DOI:10.1021/jp102731ehttp://doi.org/10.1021/jp102731e.
H Li , X Y Zhao , G H Chu , S X Zhang , X Y Yuan . RSC Adv , 2014 . 4 ( 107 ): 62694 - 2697 . DOI:10.1039/C4RA07113Ahttp://doi.org/10.1039/C4RA07113A.
K J Lian , C Q Chen , H Liu , N X Wang , H J Yu , Z H Luo .J Appl Polym Sci , 2011 . 120 ( 1 ): 156 - 164 . DOI:10.1002/app.v120.1http://doi.org/10.1002/app.v120.1.
Z H Luo , H J Yu , W Zhang . J Appl Polym Sci , 2009 . 113 ( 6 ): 4032 - 4041 . DOI:10.1002/app.v113:6http://doi.org/10.1002/app.v113:6.
R D van de Grampel , W Ming , A Gildenpfennig , W J H van Gennio , J Laven , J W Niemantsverdriet , H H Brongersma , G de With , R van der Linde . Langmuir , 2004 . 20 ( 15 ): 6344 - 6351 . DOI:10.1021/la049519phttp://doi.org/10.1021/la049519p.
Huagang Ni , Dongwu Xue , Xiaofang Wang , Wei Zhang , Xinping Wang , Zhiquan Shen . Science in China (Series B) , 2008 . 38 ( 10 ): 914 - 921.
A Z Pan , S Yang , L He . RSC Adv , 2015 . 5 ( 68 ): 55048 - 55058 . DOI:10.1039/C5RA08619Ahttp://doi.org/10.1039/C5RA08619A.
Y Gao , C L He , Y G Huang , F L Qing . Polymer , 2010 . 51 ( 25 ): 5997 - 6004 . DOI:10.1016/j.polymer.2010.10.020http://doi.org/10.1016/j.polymer.2010.10.020.
Preparation of High Performance Dielectric Elastomers by Tailoring the Aggregation Structure of Polyurethane
Phase Separation Behavior of Poly(methyl methacrylate)/ Poly(vinyl acetate)/Silica Blends
The Development of Polymer Physics and Characterization in Mainland China since Reform and Opening-up
Double-cable Conjugated Polymers and Their Application in Single-component Organic Solar Cells
High Performance in Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Poly(vinyl alcohol) Fiber Induced by Conformational Change and Structural Rearrangement of Molecular Chains
Related Author
No data
Related Institution
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology
Bohai Rim Collaborative Innovation Center on Green Chemical Application Technology, Department of Chemical Engineering, Weifang Vocational College
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University
Changchun Institute of Applied Chemistry, Chinese Academy of Science