Based on the dissolution of cellulose in aqueous LiOH/urea solvent system at low temperature
a series of cellulose/full-vulcanized carboxylic styrene-butadiene elastomeric nanoparticles (CSB ENP) composite films were successfully prepared for the first time. A certain amount of CSB ENP was introduced by blending the latex with the aqueous LiOH/urea solvent prior to dissolving of native cellulose. Cellulose/CSB ENP composite films with CSB ENP content of 2 wt% ~ 20 wt% were prepared from the resulting cellulose/CSB ENP complex solutions by coagulating with 5 wt% H
2
SO
4
/10 wt% Na
2
SO
4
aqueous solution. Their structure and properties were investigated by TEM
SEM
X-ray diffraction
solid-state NMR
thermogravimetry and tensile testing. The TEM and SEM results indicated that the CSB ENPs with particle size of 50 ~ 200 nm were embedded uniformly in the matrix of regenerated cellulose film
which possessed homogeneous micro/nanoporous structure. The results from WAXD and solid-state NMR demonstrated that the crystallinity of regenerated cellulose was barely affected by the addition of CSB ENP and there was no chemical reaction between cellulose and CSB ENP. The cellulose/CSB ENP composite films exhibited a good optical transmittance
suggesting certain miscibility of the two components. The thermal stability of the composite films was improved to some extent compared with that of the pure regenerated cellulose film. The tensile testing results showed that low content of CSB ENP could toughen the regenerated cellulose films probably due to the fact that the highly cross-linking structure of CSB ENP prevented entanglement between the rubber particles. And thus the CSB ENP with a characteristic of small particle size and large specific surface area could disperse in the cellulose matrix in nano scale. Moreover
there existed intermolecular hydrogen-bond interaction between the carboxyl groups of CSB ENP and the hydroxyl groups of cellulose. The composite film with 5 wt% of CSB ENP showed the best tensile strength and elongation at break. When the content of CSB ENP increased
the mechanical property of the composite films decreased gradually. This was possibly caused by the aggregation of excessive elastomeric nano-particles.
X Y Qiu , S W Hu . Materials , 2013 . 6 ( 3 ): 738 - 781 . DOI:10.3390/ma6030738http://doi.org/10.3390/ma6030738.
J Cai , L N Zhang . Macromol Biosci , 2005 . 5 ( 6 ): 539 - 548 . DOI:10.1002/(ISSN)1616-5195http://doi.org/10.1002/(ISSN)1616-5195.
J Cai , L N Zhang , S L Liu , Y T Liu , X J Xu , X M Chen , B Chu , X L Guo , J Xu , H Cheng , C C Han , S Kuga . Macromolecules , 2008 . 41 9345 - 9351 . DOI:10.1021/ma801110ghttp://doi.org/10.1021/ma801110g.
J Cai , L N Zhang , J P Zhou , H Li , H Chen , H M Jin . Macromol Rapid Commun , 2004 . 25 1558 - 1562 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
J Cai , L N Zhang , J P Zhou , H S Qi , H Chen , T Kondo , X M Chen , B Chu . Adv Mater , 2007 . 19 821 - 825 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
X G Luo , L N Zhang . Food Res Int , 2013 . 52 ( 1 ): 387 - 400 . DOI:10.1016/j.foodres.2010.05.016http://doi.org/10.1016/j.foodres.2010.05.016.
R P Zhang , Q L Yang , H S Qi , J P Zhou , L N Zhang . J Biobased Mater Bio , 2009 . 3 ( 2 ): 199 - 204 . DOI:10.1166/jbmb.2009.1019http://doi.org/10.1166/jbmb.2009.1019.
M L Zhang , Y Q Liu , X H Zhang , J M Gao , F Huang , Z H Song , G S Wei , J L Qiao . Polymer , 2002 . 43 5133 - 5138 . DOI:10.1016/S0032-3861(02)00393-2http://doi.org/10.1016/S0032-3861(02)00393-2.
X H Zhang , Y Q Liu , J M Gao , F Huang , Z H Song , G S Wei , J L Qiao . Polymer , 2004 . 45 6959 - 6965 . DOI:10.1016/j.polymer.2004.08.012http://doi.org/10.1016/j.polymer.2004.08.012.
Y Q Liu , Z Q Fan , H Y Ma , Y G Tan , J L Qiao . Wear , 2006 . 261 225 - 229 . DOI:10.1016/j.wear.2005.10.011http://doi.org/10.1016/j.wear.2005.10.011.
Q G Wang , X H Zhang , S Y Liu , H Gui , J M Lai , Y Q Liu , J M Gao , F Huang , Z H Song , B H Tan , J L Qiao . Polymer , 2005 . 46 10614 - 10617 . DOI:10.1016/j.polymer.2005.08.074http://doi.org/10.1016/j.polymer.2005.08.074.
Y Q Liu , X H Zhang , J M Gao , F Huang , B H Tan , G S Wei , J L Qiao . Polymer , 2004 . 45 275 - 286 . DOI:10.1016/j.polymer.2003.11.001http://doi.org/10.1016/j.polymer.2003.11.001.
J Zeng , S L Liu , J Cai , L N Zhang . J Phys Chem C , 2010 . 114 7806 - 7811 . DOI:10.1021/jp1005617http://doi.org/10.1021/jp1005617.
M He , C Y Chang , N Peng , L N Zhang . Carbohyd Polym , 2012 . 87 2512 - 2518 . DOI:10.1016/j.carbpol.2011.11.029http://doi.org/10.1016/j.carbpol.2011.11.029.
A Isogai , M Usuda , T Kato , T Uryu , R H Atalla . Macromolecules , 1989 . 22 3168 - 3172 . DOI:10.1021/ma00197a045http://doi.org/10.1021/ma00197a045.
Q T Pham , R Pétiaud , H Waton . Proton and Carbon NMR Spectra of Polymers , : London Penton Press , 1991 . 343 - 344.
D T Clark , A H K Fowler , P J Stepphenson . J Macromol Sci Polymer Rev , 1983 . 23 ( 2 ): 217 - 246 . DOI:10.1080/07366578308079443http://doi.org/10.1080/07366578308079443.
Effect of High Pressure on Crystallization Structure and Mechanical Properties of Polybutene-1 and Polypropylene Blends
Effect of Humidity on Mechanical Behavior of Polymer Hydrogen-bonding Complex Fibers
Photo-regulated Reversible Growth of Inimer-containing Crosslinked Polymers
Effect of Coagulation Bath Temperature on the Structure and Properties of Regenerated Cellulose Materials
Related Author
No data
Related Institution
National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China