Wang Ping, Liu Shun-jie, Qin Yu-sheng, Wang Xian-hong, Wang Fo-song. Controllable Synthesis of Branched CO2-based Hexol. [J]. Acta Polymerica Sinica (2):259-265(2017)
DOI:
Wang Ping, Liu Shun-jie, Qin Yu-sheng, Wang Xian-hong, Wang Fo-song. Controllable Synthesis of Branched CO2-based Hexol. [J]. Acta Polymerica Sinica (2):259-265(2017) DOI: 10.11777/j.issn1000-3304.2017.16210.
Controllable Synthesis of Branched CO2-based Hexol
基六元醇的合成路线具有可控的特点,其分子量可通过PO与DPE的摩尔比准确控制(1500~8000),同时分子量分布很窄(最低至1.08).值得注意的是,降低反应温度可显著改善聚合选择性,例如,当温度为50℃时,产物碳酸酯单元含量高达60%,而反应副产物环状碳酸酯的含量可控制在5.5 wt%以下,但是体系催化活性下降至0.14 kg g
-1
.该支化结构CO
2
基六元醇有望作为高交联密度的多元醇,用于制备高强硬质聚氨酯泡沫材料.
Abstract
Branched CO
2
-based oligo (carbonate-ether) hexols were synthesized in high productivity and selectivity by immortal copolymerization of CO
2
and propylene oxide (PO) in the presence of hydrophobic dipentaerythritol (DPE) using the zinc-cobalt double metal cyanide (Zn-Co-DMC) catalyst. The structure of the CO
2
-based hexols was confirmed
via
FTIR
1
H-NMR
13
C-NMR
DEPT-NMR
MALDI-TOF-MS
GPC and DSC. However
because of the overlap of the proton signals assigned to DPE and CO
2
-based hexols
respectively
it was hard to make sure the fully conversion of the 6 hydroxyl groups in DPE. By using
13
C-NMR technique wisely
we confirmed that all the 6 hydroxyl groups participated in the copolymerization due to the chemical shift of characteristic carbon signal of DPE. Moreover
the MALDI-TOF-MS spectrum of the polymer gave a direct visualization of the structure of CO
2
-based hexols
which contained 6 hydroxyl groups per macromolecule. The number average molecular weight (
M
n
) of the CO
2
-based hexol was in good linear relationship to the molar ratio of PO to DPE (PO/DPE)
and hence could be precisely controlled from 1500 to 8000. Besides
the rapid chain transfer reaction in the immortal copolymerization afforded the CO
2
-based hexol with a narrow polydispersity index (PDI) of 1.08 at
M
n
of 1600
which was reported as one of the narrowest PDI in heterogeneous catalytic systems. Notably
decreasing reaction temperature could substantially improve the catalytic selectivity
e.g.
at copolymerization temperature of 50℃
the carbonate unit (CU) content in the CO
2
-based hexols could reach as high as 60%
while the weight fraction of the unwanted byproduct propylene carbonate (
ω
PC
) could be controlled to as low as 5.5 wt%
although the catalytic productivity declined to 0.14 kg g
-1
. Unfortunately
the natural hydrophilic polyhydric alcohols
like sucrose and lactose
resulted in uncontrolled reactions and the corresponding CO
2
-based polyols could not be obtained. These results suggested that the natural polyhydric alcohols could not coordinate to the active center of catalyst.
S Inoue , H Koinuma , T Tsuruta . . Die Makromolekulare Chemie , 1969 . 130 ( 1 ): 210 - 220 . DOI:10.1002/macp.1969.021300112http://doi.org/10.1002/macp.1969.021300112.
X B Lu , W M Ren , G P Wu . . Acc Chem Res , 2012 . 45 ( 10 ): 1721 - 1735 . DOI:10.1021/ar300035zhttp://doi.org/10.1021/ar300035z.
Y S Qin , X H Wang . . Biotechnol J , 2010 . 5 ( 11 ): 1164 - 1180 . DOI:10.1002/biot.v5.11http://doi.org/10.1002/biot.v5.11.
Y S Qin , X F Sheng , S J Liu , G J Ren , X H Wang , F S Wang . . J CO2 Utilization , 2015 . 11 3 - 9 . DOI:10.1016/j.jcou.2014.10.003http://doi.org/10.1016/j.jcou.2014.10.003.
S Klaus , M W Lehenmeier , C E Anderson , B Rieger . . Coord Chem Rev , 2011 . 255 ( 13-14 ): 1460 - 1479 . DOI:10.1016/j.ccr.2010.12.002http://doi.org/10.1016/j.ccr.2010.12.002.
M I Childers , J M Longo , N J Van Zee , A M LaPointe , G W Coates . . Chem Rev , 2014 . 114 ( 16 ): 8129 - 8152 . DOI:10.1021/cr400725xhttp://doi.org/10.1021/cr400725x.
Y G Gao , L Gu , Y S Qin , X H Wang , F S Wang . . J Polym Sci, Part A:Polym Chem , 2012 . 50 ( 24 ): 5177 - 5184 . DOI:10.1002/pola.26366http://doi.org/10.1002/pola.26366.
J K Varghese , D S Park , J Y Jeon , B Y Lee . . J Polym Sci, Part A:Polym Chem , 2013 . 51 ( 22 ): 4811 - 4818 . DOI:10.1002/pola.v51.22http://doi.org/10.1002/pola.v51.22.
J Wang , H M Zhang , Y Y Miao , L J Qiao , X H Wang , F S Wang . . Green Chem , 2016 . 18 ( 2 ): 524 - 530 . DOI:10.1039/C5GC01373Ahttp://doi.org/10.1039/C5GC01373A.
S J Liu , Y S Qin , X H Wang , F S Wang . . J Renew Mater , 2015 . 3 ( 12 ): 101 - 112.
N Von der Assen , A Bardow . . Green Chem , 2014 . 16 ( 6 ): 3272 - 3280 . DOI:10.1039/c4gc00513ahttp://doi.org/10.1039/c4gc00513a.
A Cyriac , S H Lee , J K Varghese , E S Park , J H Park , B Y Lee . . Macromolecules , 2010 . 43 ( 18 ): 7398 - 7401 . DOI:10.1021/ma101259khttp://doi.org/10.1021/ma101259k.
J Langanke , A Wolf , J Hofmann , K Bohm , M A Subhani , T E Muller , W Leitner , C Gurtler . . Green Chem , 2014 . 16 ( 4 ): 1865 - 1870 . DOI:10.1039/C3GC41788Chttp://doi.org/10.1039/C3GC41788C.
Y G Gao , Y S Qin , X J Zhao , F S Wang , X H Wang . . J Polym Res , 2012 . 19 ( 5 ): 9878 - 9886 . DOI:10.1007/s10965-012-9878-5http://doi.org/10.1007/s10965-012-9878-5.
S J Liu , Y Y Miao , L J Qiao , Y S Qin , X H Wang , X S Chen , F S Wang . . Polym Chem , 2015 . 6 ( 43 ): 7580 - 7585 . DOI:10.1039/C5PY00556Fhttp://doi.org/10.1039/C5PY00556F.
S J Liu , Y S Qin , X S Chen , X H Wang , F S Wang . . Polym Chem , 2014 . 5 ( 21 ): 6171 - 6179 . DOI:10.1039/C4PY00578Chttp://doi.org/10.1039/C4PY00578C.
C Gao , D Y Yan . . Prog Polym Sci , 2004 . 29 ( 3 ): 183 - 275 . DOI:10.1016/j.progpolymsci.2003.12.002http://doi.org/10.1016/j.progpolymsci.2003.12.002.
W F Jiang , Y F Zhou , D Y Yan . . Chem Soc Rev , 2015 . 44 ( 12 ): 3874 - 3889 . DOI:10.1039/C4CS00274Ahttp://doi.org/10.1039/C4CS00274A.
Z F Li , Y S Qin , X J Zhao , F S Wang , S B Zhang , X H Wang . . Eur Polym J , 2011 . 47 ( 11 ): 2152 - 2157 . DOI:10.1016/j.eurpolymj.2011.08.004http://doi.org/10.1016/j.eurpolymj.2011.08.004.
S Lee , S T Baek , K Anas , C S Ha , D W Park , J W Lee , I Kim . . Polymer , 2007 . 48 ( 15 ): 4361 - 4367 . DOI:10.1016/j.polymer.2007.05.072http://doi.org/10.1016/j.polymer.2007.05.072.
G W Coates , D R Moore . . Angew Chem Int Ed , 2004 . 43 ( 48 ): 6618 - 6639 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
N J Robertson , Z Qin , G C Dallinger , E B Lobkovsky , S Lee , G W Coates . . Dalton Trans , 2006 . ( 45 ): 5390 - 5395 . DOI:10.1039/b607963fhttp://doi.org/10.1039/b607963f.
M P Shaver , D J A Cameron . . Biomacromolecules , 2010 . 11 ( 12 ): 3673 - 3679 . DOI:10.1021/bm101140dhttp://doi.org/10.1021/bm101140d.