Yuan-pei Liu, Qing Zhang, Jie Ren, Jie Guo, Zhi-jiang Cai. Preparation of Polyhydroxybutyrate/Carbon Nanotubes Composite Nanofiber Membrane and Their Adsorption Performance for Heavy Metal Ions. [J]. Acta Polymerica Sinica (5):820-829(2017)
DOI:
Yuan-pei Liu, Qing Zhang, Jie Ren, Jie Guo, Zhi-jiang Cai. Preparation of Polyhydroxybutyrate/Carbon Nanotubes Composite Nanofiber Membrane and Their Adsorption Performance for Heavy Metal Ions. [J]. Acta Polymerica Sinica (5):820-829(2017) DOI: 10.11777/j.issn1000-3304.2017.16217.
Preparation of Polyhydroxybutyrate/Carbon Nanotubes Composite Nanofiber Membrane and Their Adsorption Performance for Heavy Metal Ions
以聚羟基丁酸酯和碳纳米管为原料,采用三氯甲烷/二甲基甲酰胺混合溶液为溶剂,利用静电纺丝技术制备了聚羟基丁酸酯/碳纳米管复合纳米纤维膜.研究了碳纳米管的含量对纳米纤维膜形貌和力学性能的影响,探讨了复合纳米纤维膜对重金属Cu(Ⅱ)、Cd(Ⅱ)和Pb(Ⅱ)的吸附特性.实验结果表明:加入1 wt%碳纳米管能够将纳米纤维的平均直径从(728±146)nm降低至(468±89)nm,纳米纤维膜的比表面积从27.24 m
Polyhydroxybutyrate/carbon nanotubes composite nanofiber membrane was successfully prepared via electrospinning technique using polyhydroxybutyrate and carbon nanotubes as raw materials and chloroform/dimethylformamide blend as co-solvent. The effect of carbon nanotube content on the membrane's morphology and mechanical properties was investigated
and its adsorption performance to heavy metal ions was evaluated. Increasing the content of carbon nanotubes from 0 to 1 wt%
it was found that the average diameter of composite nanofibers decreased from (728±146) nm to (468±89) nm while their specific surface area increased from 27.24 m
2
/g to 43.45 m
2
/g; meanwhile
the nanofiber membrane was significantly strengthened with the optimum mechanical performance obtained at the content equal to 1 wt%. A tensile stress of 5.85 MPa was achieved then
which was about 115% improvement compared with the pure polyhydroxybutyrate nanofiber membrane. Good adsorption performance was exhibited by the composite nanofiber membrane for Cu (Ⅱ)
Cd (Ⅱ) and Pb (Ⅱ) ions from aqueous solution. Under the optimum pH of 5
the maximum adsorption capacity was measured as about 91.04
171.05 and 197.03 mg/g for Cu (Ⅱ)
Cd (Ⅱ) and Pb (Ⅱ) ions
respectively; the corresponding equilibrium time and adsorption rate were about 50
60 and 60 min and 1.79
2.83 and 3.28 mg/g/min
respectively. Langmuir
Freundlich and Temkin models were used to analyze the thermodynamics parameters during adsorption while Pseudo-first-order
Pseudo-second-order and Intraparticle diffusion models were applied for analysis of the kinetics parameters. It was indicated that the adsorption isotherm data fitted well with Freundlich model and the kinetic process matched Pseudo-second order model. Cycle experiments demonstrated that above 87% of initial adsorption capacity could be maintained after 5 times of usage
which suggested the nanofiber membrane's potential of applications in wastewater treatment for the removal of heavy metal ions as a nano-adsorbent.
关键词
聚羟基丁酸酯碳纳米管复合纳米纤维重金属离子吸附
Keywords
PolyhydroxybutyrateCarbon nanotubesComposite nanofiberHeavy metal ionsAdsorption
references
H Chanki , R A Jungki , P C Beum . . Biochemistry , 2007 . 46 6118 - 6125 . DOI:10.1021/bi7000032http://doi.org/10.1021/bi7000032.
M Petersková , C Valderrama , O Gibert , J L Cortina . . Desalination , 2012 . 286 316 - 323 . DOI:10.1016/j.desal.2011.11.042http://doi.org/10.1016/j.desal.2011.11.042.
J Khan , B P Tripathi , A Saxena , V K Shahi . . Electrochim Acta , 2007 . 52 6719 - 6727 . DOI:10.1016/j.electacta.2007.04.085http://doi.org/10.1016/j.electacta.2007.04.085.
H Yan , A Moriya , T Maruyama , Y Ohmukai , H Matsuyama . . J Membrane Sci , 2011 . 376 247 - 253 . DOI:10.1016/j.memsci.2011.04.035http://doi.org/10.1016/j.memsci.2011.04.035.
T H Shek , A Ma , V K C Lee , G Mckay . . Chem Eng J , 2009 . 146 63 - 70 . DOI:10.1016/j.cej.2008.05.019http://doi.org/10.1016/j.cej.2008.05.019.
C W Li , Y M Chen , S T Hsiao . . Chemosphere , 2008 . 71 51 - 58 . DOI:10.1016/j.chemosphere.2007.10.050http://doi.org/10.1016/j.chemosphere.2007.10.050.
M Anbia , M Haqshenas . . Int J Environ Sci Technol , 2015 . 12 1 - 16 . DOI:10.1007/s13762-013-0421-yhttp://doi.org/10.1007/s13762-013-0421-y.
G Zhao , X Zhang , T J Lu , F Xu . . Adv Funct Mater , 2015 . 25 5726 - 5738 . DOI:10.1002/adfm.201502142http://doi.org/10.1002/adfm.201502142.
Y Xu , Y Zhu , F Han , C Luo , C Wang . . Adv Energy Mater , 2015 . 5 .
S Liang , X He , F Wang , W Geng , X Fu , J Ren . . Sensors Actuat B Che , 2015 . 208 363 - 368 . DOI:10.1016/j.snb.2014.11.035http://doi.org/10.1016/j.snb.2014.11.035.
Y Li , J Zhang , C Xu , Y Zhou . . Sci China Chem , 2016 . 59 95 - 105.
T Xiang , Z L Zhang , H Q Liu , Z Z Yin , L I Lei , X M Liu . . Sci China , 2013 . 5 567 - 575.
Q Feng , B Tang , Q Wei , D Hou , S Bi , A Wei . . Int J Mol Sci , 2012 . 13 12734 - 12746 . DOI:10.3390/ijms131012734http://doi.org/10.3390/ijms131012734.
A A Taha , J Qiao , F Li , B Zhang . . J Environ Sci , 2012 . 24 610 - 646 . DOI:10.1016/S1001-0742(11)60806-1http://doi.org/10.1016/S1001-0742(11)60806-1.
R Zhao , X Li , B Sun , M Shen , X Tan , Y Ding . . Chem Eng J , 2015 . 268 290 - 299 . DOI:10.1016/j.cej.2015.01.061http://doi.org/10.1016/j.cej.2015.01.061.
L Ping , Y L Hsieh . . Appl Mater Inter , 2010 . 2 2413 - 2420 . DOI:10.1021/am1004128http://doi.org/10.1021/am1004128.
Y Q Wan , J H He , J Y Yu . . Polym Int , 2007 . 56 1367 - 1370 . DOI:10.1002/(ISSN)1097-0126http://doi.org/10.1002/(ISSN)1097-0126.
S M Kim , S H Kim , M S Choi , J Y Lee . . J Nanosci Nanotechno , 2016 . 16 2908 - 2911 . DOI:10.1166/jnn.2016.11088http://doi.org/10.1166/jnn.2016.11088.
J Ayutsede , M Gandhi , S Sukigara , H Ye , C M Hsu , Y Gogotsi . . Biomacromolecules , 2006 . 7 208 - 214 . DOI:10.1021/bm0505888http://doi.org/10.1021/bm0505888.
Adsorption Behavior of Lysozyme by Sponge-like Materials Based on Electrospinning
Phase Controllable Supramolecular Porous Adsorbent for Pollutants Adsorption and Separation
Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction
Double pH-Responsive Pickering Emulsions Stabilized by Quaternized Lignin Combination with Titanium Dioxide Nanoparticles
Related Author
No data
Related Institution
Materials Science and Engineering, Shandong University of Technology
College of Chemistry and Chemical Engineering, Qingdao University
Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University
State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology
College of Pharmacy, Henan University of Chinese Medicine