浏览全部资源
扫码关注微信
1.上海大学化学系 上海 200444
2.中国科学院上海有机化学研究所 上海 200032
Published:2017-1,
Received:31 July 2016,
Revised:22 August 2016,
扫 描 看 全 文
Fan Yu, Lin Feng, Xu Xiao-na, Xu Jia-qiang, Zhao Xin. Construction of a Rod-Coil Supramolecular Copolymer through CB[8]-encapsulation-enhanced Donor-Acceptor Interaction. [J]. Acta Polymerica Sinica (1):80-85(2017)
Fan Yu, Lin Feng, Xu Xiao-na, Xu Jia-qiang, Zhao Xin. Construction of a Rod-Coil Supramolecular Copolymer through CB[8]-encapsulation-enhanced Donor-Acceptor Interaction. [J]. Acta Polymerica Sinica (1):80-85(2017) DOI: 10.11777/j.issn1000-3304.2017.16242.
设计合成了一种缺电性的刚性棒状超分子单体,在葫芦脲(CB[8])存在下,它与富电性的柔性单体受CB[8]包结增强的供体-受体作用驱动在水中共组装形成“刚-柔”(rod-coil)型超分子共聚物.运用核磁共振滴定实验、紫外-可见光谱、二维扩散排序核磁共振谱(DOSY)、动态光散射(DLS)以及透射电子显微镜(TEM)等对超分子聚合物的形成及其结构进行了证实和表征,并发现该超分子共聚物在低浓度下采取伸展的线形构象,当浓度增加到一定程度后其线形骨架发生卷曲,转变为颗粒状团聚结构.
Compared to traditional polymers
supramolecular polymers have quite limited structural diversity. In this context
to develop supramolecular polymers with novel backbone structures is highly desired
since this extends not only the diversity of supramolecular polymers
but also might bring in new functions and applications. In this contribution
a rigid rod-like supramolecular monomer
in which electron-deficient viologen units are incorporated at both ends of its skeleton
was designed and synthesized. Its co-assembly with an electron-rich flexible monomer leads to the formation of a rod-coil supramolecular copolymer
driven by cucurbit[8]uril (CB[8]
)-encapsulation-enhanced donor-acceptor interaction between naphthol segments of the flexible monomer and viologen units of the rigid monomer. The as-prepared supramolecular polymer was systematically characterized by
1
H-NMR analysis
UV-Vis spectroscopy
diffusion-ordered NMR spectroscopy (DOSY)
dynamic light scattering (DLS) and transmission electron microscopy (TEM). While the
1
H-NMR result indicated host-guest complexation through the encapsulation of a viologen unit and a naphthol segment in the cavity of one CB[8]
the existence of donor-acceptor interaction between the two guest molecules was clearly evidenced by UV-Vis spectrum which exhibited a notable charge-transfer absorption in visible region. The formation of large size supramolecular entities in water was revealed by DOSY and DLS studies. And their linearly polymeric backbones were directly observed by TEM. Based on these experimental results
the polymeric structures of the assembled material were confirmed. Furthermore
DLS and TEM investigations also revealed that the supramolecular polymer adopted an extended linear conformation at low concentration
which further curled into aggregated morphology at high concentration. This might be attributed to the tendency of the supramolecular polymer to decrease its surface energy with increasing concentration. The supramolecular copolymer reported in this paper represents a new type of water-soluble supramolecular polymer. Its concentration-dependent morphology changes are quite interesting
which might shed light on the exploration of unique features and new applications for the supramolecular polymers.
超分子共聚物葫芦脲[8]供体-受体作用"刚-柔"型
Supramolecular copolymerCB[8]Donor-acceptor interactionRod-coil
L Yang , X Tan , Z Wang , X Zhang . . Chem Rev , 2015 . 115 7196 - 7239 . DOI:10.1021/cr500633bhttp://doi.org/10.1021/cr500633b.
E Elacqua , D S Lye , M Weck . . Acc Chem Res , 2014 . 47 2405 - 2416 . DOI:10.1021/ar500128whttp://doi.org/10.1021/ar500128w.
J F Xu , Y Z Chen , D Wu , L Z Wu , C H Tung , Q Z Yang . . Angew Chem Int Ed , 2013 . 52 9738 - 9742 . DOI:10.1002/anie.201303496http://doi.org/10.1002/anie.201303496.
T Xiao , X Feng , S Ye , Y Guan , S L Li , Q Wang , Y Ji , D Zhu , X Hu , C Lin , Y Pan , L Wang . . Macromolecules , 2012 . 45 9585 - 9594 . DOI:10.1021/ma302459nhttp://doi.org/10.1021/ma302459n.
N N Adarsh , P Dastidar . . Chem Soc Rev , 2012 . 41 3039 - 3060 . DOI:10.1039/c2cs15251ghttp://doi.org/10.1039/c2cs15251g.
S G Chen , Y Yu , X Zhao , Y Ma , X K Jiang , Z T Li . . J Am Chem Soc , 2011 . 133 11124 - 11127 . DOI:10.1021/ja205059zhttp://doi.org/10.1021/ja205059z.
S Dong , B Zheng , F Wang , F Huang . . Acc Chem Res , 2014 . 47 1982 - 1994 . DOI:10.1021/ar5000456http://doi.org/10.1021/ar5000456.
Wenzhong Huang , Tianguan Zhan , Feng Lin , Xin Zhao . . Prog Chem , 2016 . 28 165 - 183.
黄 文中 , 占 田广 , 林 沨 , 赵 新 . . 化学进展 , 2016 . 28 165 - 183.
D S Guo , Y Liu . . Chem Soc Rev , 2012 . 41 5907 - 5921 . DOI:10.1039/c2cs35075khttp://doi.org/10.1039/c2cs35075k.
Y K Tian , Y G Shi , Z S Yang , F Wang . . Angew Chem Int Ed , 2014 . 53 6090 - 6094 . DOI:10.1002/anie.201402192http://doi.org/10.1002/anie.201402192.
L R Hart , J H Hunter , N A Nguyen , J L Harries , B W Greenland , M E Mackay , H M Colquhoun , W Hayes . . Polym Chem , 2014 . 5 3680 - 3688 . DOI:10.1039/C4PY00292Jhttp://doi.org/10.1039/C4PY00292J.
S Burattini , B W Greenland , W Hayes , M E Mackay , S J Rowan , H M Colquhoun . . Chem Mater , 2011 . 23 6 - 8 . DOI:10.1021/cm102963khttp://doi.org/10.1021/cm102963k.
C Zhou , J Tian , J L Wang , D W Zhang , X Zhao , Y Liu , Z T Li . . Polym Chem , 2014 . 5 341 - 345 . DOI:10.1039/C3PY01006Fhttp://doi.org/10.1039/C3PY01006F.
J Tian , Y D Ding , T Y Zhou , K D Zhang , X Zhao , H Wang , D W Zhang , Y Liu , Z T Li . . Chem Eur J , 2014 . 20 575 - 584 . DOI:10.1002/chem.v20.2http://doi.org/10.1002/chem.v20.2.
L Zhang , T Y Zhou , J Tian , H Wang , D W Zhang , X Zhao , Y Liu , Z T Li . . Polym Chem , 2014 . 5 4715 - 4721 . DOI:10.1039/C4PY00139Ghttp://doi.org/10.1039/C4PY00139G.
T Aida , E W Meijer , S I Stupp . . Science , 2012 . 335 813 - 817 . DOI:10.1126/science.1205962http://doi.org/10.1126/science.1205962.
X Ma , H Tian . . Acc Chem Res , 2014 . 47 1971 - 1981 . DOI:10.1021/ar500033nhttp://doi.org/10.1021/ar500033n.
C Fouquey , J M Lehn , A M Levelut . . Adv Mater , 1990 . 2 254 - 257 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
P Sijbesma , F H Beijer , L Brunsveld , B J B Folmer , J H K K Hirschberg , R F M Lange , J K L Lowe , E W Meijer . . Science , 1997 . 278 1601 - 1604 . DOI:10.1126/science.278.5343.1601http://doi.org/10.1126/science.278.5343.1601.
G B W L Ligthart , H Ohkawa , R P Sijbesma , E W Meijer . . J Am Chem Soc , 2005 . 127 810 - 811 . DOI:10.1021/ja043555thttp://doi.org/10.1021/ja043555t.
J Roosma , T Mes , P Leclere , A R A Palmans , E W Meijer . . J Am Chem Soc , 2008 . 130 1120 - 1121 . DOI:10.1021/ja0774764http://doi.org/10.1021/ja0774764.
Y Liu , R Fang , X Tan , Z Wang , X Zhang . . Chem Eur J , 2012 . 18 15650 - 15654 . DOI:10.1002/chem.201202985http://doi.org/10.1002/chem.201202985.
T T Cao , X Y Yao , J Zhang , Q C Wang , X Ma . . Chin Chem Lett , 2015 . 26 867 - 871 . DOI:10.1016/j.cclet.2015.01.032http://doi.org/10.1016/j.cclet.2015.01.032.
F Lin , T G Zhan , T Y Zhou , K D Zhang , G Y Li , J Wu , X Zhao . . Chem Commun , 2014 . 50 7982 - 7985 . DOI:10.1039/c4cc02971bhttp://doi.org/10.1039/c4cc02971b.
H J Kim , J Heo , W S Jeon , E Lee , J Kim , S Sakamoto , K Yamaguchi , K Kim . . Angew Chem Int Ed , 2001 . 40 1526 - 1529 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
X Zhang , C B Nie , T Y Zhou , Q Y Qi , J Fu , X Z Wang , L Y Dai , Y Chen , X Zhao . . Polym Chem , 2015 . 6 1923 - 1927 . DOI:10.1039/C4PY01669Fhttp://doi.org/10.1039/C4PY01669F.
F Lin , T Y Zhou , T G Zhan , X Zhao . . Tetrahedron , 2014 . 70 2251 - 2256 . DOI:10.1016/j.tet.2014.02.029http://doi.org/10.1016/j.tet.2014.02.029.
Y Liu , Z Wang , X Zhang . . Chem Soc Rev , 2012 . 41 5922 - 5932 . DOI:10.1039/c2cs35084jhttp://doi.org/10.1039/c2cs35084j.
0
Views
17
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution