Yang Zhi-shuai, Tian Yu-kui, Li Zi-jian, Ao Lei, Gao Zong-chun, Wang Feng. Construction of Linear Supramolecular Polymers on the Basis of Non-covalent Molecular Tweezer/Guest Recognition. [J]. Acta Polymerica Sinica (1):121-128(2017)
DOI:
Yang Zhi-shuai, Tian Yu-kui, Li Zi-jian, Ao Lei, Gao Zong-chun, Wang Feng. Construction of Linear Supramolecular Polymers on the Basis of Non-covalent Molecular Tweezer/Guest Recognition. [J]. Acta Polymerica Sinica (1):121-128(2017) DOI: 10.11777/j.issn1000-3304.2017.16251.
Construction of Linear Supramolecular Polymers on the Basis of Non-covalent Molecular Tweezer/Guest Recognition
Supramolecular polymers represent a novel class of macromolecules
in which self-assembly serves as a powerful tool and holds the monomeric units together
via
reversible non-covalent bonds. The ideal non-covalent recognition units should concomitantly fulfill high complexation directionality
strong binding affinity and stimuli-sensitive responsiveness. To meet the requirements
hydrogen bond
metal-ligand and macrocyclic host-guest interactions have been widely served as the non-covalent driving forces for controlled supramolecular polymerization processes. The expansion of novel driving forces and the corresponding recognition motifs are of paramount importance for the current supramolecular polymers researches. In this regard
integration of donor and acceptor chromophores in a mixed supramolecular polymeric array is intriguing
since it is an efficient way to construct nano-sized optoelectronic devices. However
due to the non-specific and non-directional properties of electron donor-acceptor interactions
a variety of erratic stacking modes (such as phase segregation
random or alternating mixing) could potentially exist in the resulting supramolecular polymeric assemblies. Hence
the precise organization of multi-component
π
-aromatic systems is highly desirable. Our research group has recently developed a "tweezering directed self-assembly" strategy for the construction of well-ordered supramolecular donor-acceptor polymers. As a research extension
herein a novel alkynylplatinum (Ⅱ) terpyridine molecular tweezer/pyrene recognition motif is investigated
which features with intermolecular NH-N hydrogen bond between the amide unit on the guest and the pyridine moiety on the molecular tweezer. Ascribing to the elaborate combination of donor-acceptor and hydrogen-bonding interactions
it demonstrates rather strong binding affinity (
K
a
=3.58×10
5
(mol/L)
-1
). Moreover
by modulating the intermolecular NH-N hydrogen bonds involved in the system
its binding affinity exhibits significantly large variations towards external stimuli. Such non-covalent recognition motifs are further employed as the connecting units for the fabrication of high-molecular-weight supramolecular polymers. Moreover
the resulting polymeric assemblies exhibit interesting dynamic temperature-responsive behaviors
which are promising for the development of adaptive
T Aida , E W Meijer , S I Stupp . . Science , 2012 . 335 813 - 817 . DOI:10.1126/science.1205962http://doi.org/10.1126/science.1205962.
Greef T F A de , M M J Smulders , M Wolffs , A P H J Schenning , R P Sijbesma , E W Meijer . . Chem Rev , 2009 . 109 5687 - 5754 . DOI:10.1021/cr900181uhttp://doi.org/10.1021/cr900181u.
L Brunsveld , B J B Folmer , E W Meijer , R P Sijbesma . . Chem Rev , 2001 . 101 4071 - 4097 . DOI:10.1021/cr990125qhttp://doi.org/10.1021/cr990125q.
L Yang , X Tan , Z Wang , X Zhang . . Chem Rev , 2015 . 115 7196 - 7239 . DOI:10.1021/cr500633bhttp://doi.org/10.1021/cr500633b.
X Yan , F Wang , B Zheng , F Huang . . Chem Soc Rev , 2012 . 41 6042 - 6065 . DOI:10.1039/c2cs35091bhttp://doi.org/10.1039/c2cs35091b.
F J M Hoeben , P Jonkheijm , E W Meijer , A P H J Schenning . . Chem Rev , 2005 . 105 1491 - 1546 . DOI:10.1021/cr030070zhttp://doi.org/10.1021/cr030070z.
K T Wong , D M Bassani . . NPG Asia Mater , 2014 . 6 e116 DOI:10.1038/am.2014.53http://doi.org/10.1038/am.2014.53.
S Prasanthkumar , S Ghosh , V C Nair , A Saeki , S Seki , A Ajayaghosh . . Angew Chem Int Ed , 2015 . 54 946 - 950 . DOI:10.1002/anie.201408831http://doi.org/10.1002/anie.201408831.
A S Tayi , A Kaeser , M Matsumoto , T Aida , S I Stupp . . Nat Chem , 2015 . 7 281 - 294 . DOI:10.1038/nchem.2206http://doi.org/10.1038/nchem.2206.
Y K Tian , Y G Shi , Z S Yang , F Wang . . Angew Chem Int Ed , 2014 . 53 6090 - 6094 . DOI:10.1002/anie.201402192http://doi.org/10.1002/anie.201402192.
Y K Tian , Z S Yang , X Q Lv , R S Yao , F Wang . . Chem Commun , 2014 . 50 9477 - 9480 . DOI:10.1039/C4CC03158Jhttp://doi.org/10.1039/C4CC03158J.
Y Liu , R Fang , X Tan , Z Wang , X Zhang . . Chem Eur J , 2012 . 18 15650 - 15654 . DOI:10.1002/chem.201202985http://doi.org/10.1002/chem.201202985.
Y Tanaka , K M C Wong , V W W Yam . . Chem Eur J , 2013 . 19 390 - 399 . DOI:10.1002/chem.201201942http://doi.org/10.1002/chem.201201942.
Y Tanaka , K M C Wong , V W W Yam . . Chem Sci , 2012 . 3 1185 - 1191 . DOI:10.1039/c2sc00935hhttp://doi.org/10.1039/c2sc00935h.
H Liu , X Han , Z Gao , Z Gao , F Wang . . Macromol Rapid Commun , 2016 . 37 718 - 724 . DOI:10.1002/marc.v37.8http://doi.org/10.1002/marc.v37.8.
Y J Tian , E W Meijer , F Wang . . Chem Commun , 2013 . 49 9197 - 9199 . DOI:10.1039/c3cc44997ahttp://doi.org/10.1039/c3cc44997a.
C M A Leenders , L Albertazzi , T Mes , M M E Koenigs , A R A Palmans , E W Meijer . . Chem Commun , 2013 . 49 1963 - 1965 . DOI:10.1039/c3cc38949ahttp://doi.org/10.1039/c3cc38949a.
K L Zhong , Z N Chen , B F Guo , K D Cai , Y R Liang , J R Li , L Y Jin . . Chinese J Polym Sci , 2016 . 34 307 - 315 . DOI:10.1007/s10118-016-1755-yhttp://doi.org/10.1007/s10118-016-1755-y.
Structured Liquids: Design, Construction and Applications
Synthesis and Self-assembly of Asymmetric Molecular Brushes with Azobenzene-containing Side Chains
Preparation and Properties of Dopamine Modified Polydiacetylene Composite Thermochromic Material
Synthesis and Self-assembly Behavior of Porphyrin-based Polypeptides
Related Author
No data
Related Institution
Department of Chemistry, Fudan University
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology
Department of Polymer Science and Engineering, University of Massachusetts, Amherst
Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology
College of Textile Science and Engineering, Jiangnan University