浏览全部资源
扫码关注微信
1.复旦大学高分子科学系 聚合物分子工程国家重点实验室 上海 200433
2.上海大学纳米化学与生物学研究所 上海 200444
Published:20 February 2017,
Received:18 August 2016,
Revised:9 October 2016,
扫 描 看 全 文
Xin-ming Pu, Zhen-hua Ju, Qi-jing Chen, Ze-sheng An, Jun-po He. Synthesis of Amphiphilic Highly Branched Block Copolymers Based on Mechanism Transformation from Anionic Polymerization into RAFT-based Polymerization. [J]. Acta Polymerica Sinica (2):283-293(2017)
Xin-ming Pu, Zhen-hua Ju, Qi-jing Chen, Ze-sheng An, Jun-po He. Synthesis of Amphiphilic Highly Branched Block Copolymers Based on Mechanism Transformation from Anionic Polymerization into RAFT-based Polymerization. [J]. Acta Polymerica Sinica (2):283-293(2017) DOI: 10.11777/j.issn1000-3304.2017.16256.
报道了一种从引发型单体CX(inimer)出发、通过负离子-RAFT机理转换,制备两亲性高度支化聚合物的方法.首先,用仲丁基锂(
s
-BuLi)与双官能团的1
1-二苯基乙烯衍生物MDDPE反应制备inimer,并通过inimer与苯乙烯共聚制备高度支化聚苯乙烯活性负离子;然后将末端负离子通过与CS
2
和1-溴乙基苯反应,原位转化为双硫酯基团,并作为大分子链转移剂(dendritic-CTA)调控
N
-异丙基丙烯酰胺(NIPAM)聚合,从而得到含聚苯乙烯(PS)和PNIPAM的两亲性支化嵌段共聚物.用联有光散射的凝聚色谱(GPC-MALLS)以及
1
H-NMR对产物进行了表征,并通过荧光探针、动态光散射(DLS)、透射电镜(TEM)等技术对两亲性支化嵌段共聚物在的溶液性质和乳化性能进行了研究.结果表明,该聚合物在水溶液中表现出独特的随温度变化的聚集行为,在水/油两相体系中具有极强的乳化能力.
We developed a synthetic method for amphiphilic and highly branched block copolymers composed of polystyrene and poly (
N
-isopropylacrylamide) (PNIPAM) through copolymerization of an anionic inimer (synthesized from monoaddition of 1
3-bis (1-phenylvinyl) benzene (MDDPE) with
s
-butyllithium) and styrene
followed by mechanism transformation from living anionic to controlled radical polymerization based on reversible addition-fragmentation chain transfer process. The mechanism transformation was achieved on the basis of conversion of living anionic species into thiocarbonylthio moieties by sequential reaction with CS
2
and 1-phenylethyl bromide
affording a dendritic chain transfer agent (Dendritic-CTA). The resulting Dendritic-CTA was further employed to mediate RAFT polymerization of NIPAM to give amphiphilic and highly branched block copolymer. A series of amphiphilic and highly branched block copolymers were thus prepared by changing the feed ratio of NIPAM to Dendritic-CTA. The successful formation of Dendritic-CTA was confirmed by ultraviolet spectrum (UV)
the structures of the Dendritic-CTA and the highly branched amphiphilic block copolymers were further characterized by
1
H nuclear magnetic resonance (
1
H-NMR)
gel permeation chromatography (GPC) equipped with multiangle laser light scattering detector. The solution properties of the highly branched amphiphilic block copolymers were investigated by fluorescence emission spectra (using nile red as the fluorescent probe)
dynamic light scattering (DLS)
and transmission electron microscopy (TEM). The fluorescence results show that the amphiphilic highly branched polymers have a low critical aggregation concentration (CAC) around 0.0035 mg/mL
and a temperature dependent multistage aggregation of the products in water was observed in the test of DLS. The DLS results also showed that the amphiphilic and highly branched block copolymers could form micelles with
R
h
size of 135 nm in water; the TEM results further illustrated that the amphiphilic and highly branched products could form spherical micelles and the diameters of the micelles were around 40 nm. Furthermore
the ability of the amphiphilic and highly branched products to stabilize the emulsion was studied using different oil/water systems. The results indicated a strong ability of emulsification arising from highly branched topology. Reversible formation of W/O and O/W was also observed due to the presence of PNIPAM segment with lower critical solution temperature (LCST). In addition
the emulsifying properties of the amphiphilic and highly branched products were closely dependent on the polarity of the solvents which were use to dissolved the polymers initially. The process may serve as a versatile approach to make amphiphilic and highly branched block copolymers with temperature responsiveness.
高度支化聚合物活性聚合机理转换引发型单体两亲性
Highly branched polymerLiving polymerizationMechanism transformationInimerAmphiphilicity
D L Wang , T Y Zhao , X Y Zhu , D Y Yan , W X Wang . Chem Soc Rev , 2015 . 44 4023 - 4071 . DOI:10.1039/C4CS00229Fhttp://doi.org/10.1039/C4CS00229F.
Yan D Y, Gao C, Frey H. Hyperbranched Polymers Synthesis, Properties, and Applications. John Wiley & Sons:Inc, New Jersey, 2011. 1-453
P J Flory . Principles of Polymer Chemistry , : New York Cornell University Press , 1953 . 1 - 810.
A M Caminade , D Y Yan , D K Smith . Chem Soc Rev , 2015 . 44 3870 - 3873 . DOI:10.1039/C5CS90049Bhttp://doi.org/10.1039/C5CS90049B.
D Y Yan , C Gao . Macromolecules , 2000 . 33 7693 - 7699 . DOI:10.1021/ma000438jhttp://doi.org/10.1021/ma000438j.
C Gao , D Y Yan . Macromolecules , 2001 . 34 156 - 161 . DOI:10.1021/ma001090vhttp://doi.org/10.1021/ma001090v.
C Gao , D Y Yan , W Tang . Macromol Chem Phys , 2001 . 202 2623 - 2629 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935.
J Han , B Zhao , Y Q Gao . Polym Chem , 2011 . 2 2175 - 2178 . DOI:10.1039/c1py00235jhttp://doi.org/10.1039/c1py00235j.
C Gao , D Y Yan . Macromolecules , 2003 . 36 613 - 620 . DOI:10.1021/ma021411yhttp://doi.org/10.1021/ma021411y.
C Gao , Y M Xu , D Y Yan , W Chen . Biomacromolecules , 2003 . 4 704 - 712 . DOI:10.1021/bm025738ihttp://doi.org/10.1021/bm025738i.
C Gao , D Y Yan . Prog Polym Sci , 2004 . 29 183 - 275 . DOI:10.1016/j.progpolymsci.2003.12.002http://doi.org/10.1016/j.progpolymsci.2003.12.002.
D Y Yan , Z P Zhou , A H E Müller . Macromolecules , 1999 . 39 245 - 250.
J Han , S P Li , A J Tang , C Gao . Macromolecules , 2012 . 45 4966 - 4977 . DOI:10.1021/ma300718dhttp://doi.org/10.1021/ma300718d.
Z P Zhou , D Y Yan . Macromolecules , 2009 . 42 4047 - 4052 . DOI:10.1021/ma900443uhttp://doi.org/10.1021/ma900443u.
A Pfaff , A H E Müller . Macromolecules , 2011 . 44 1266 - 1272 . DOI:10.1021/ma102794zhttp://doi.org/10.1021/ma102794z.
M Rikkou-Kalourkoti , K Matyjaszewski , C S Patrickios . Macromolecules , 2012 . 45 1313 - 1320 . DOI:10.1021/ma202021yhttp://doi.org/10.1021/ma202021y.
J M J Fréchet , M Henmi , I Gitsov , S Aoshima , M R Leduc , R B Grubbs . Science , 1995 . 269 1080 - 1083 . DOI:10.1126/science.269.5227.1080http://doi.org/10.1126/science.269.5227.1080.
C M Li , J P He , L Li , J Z Cao , Y L Yang . Macromolecules , 1999 . 32 7012 - 7014 . DOI:10.1021/ma990201rhttp://doi.org/10.1021/ma990201r.
Y F Tao , J P He , Z M Wang , J Y Pan , H J Jiang , S M Chen , Y L Yang . Macromolecules , 2001 . 34 4742 - 4748 . DOI:10.1021/ma0100201http://doi.org/10.1021/ma0100201.
K Matyjaszewski , S G Gaynor . Macromol Rapid Commun , 1998 . 19 665 - 670 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
K Matyjaszewski , S G Gaynor , A Kulfan , M Podwika . Macromolecules , 1997 . 30 5192 - 5194 . DOI:10.1021/ma970359ghttp://doi.org/10.1021/ma970359g.
Z M Wang , J P He , Y F Tao , L Yang , H J Jiang , Y L Yang . Macromolecules , 2003 . 36 7446 - 7452 . DOI:10.1021/ma025673bhttp://doi.org/10.1021/ma025673b.
B Yamada , O Konosu , K Tanaka , F Oku . Polymer , 2000 . 41 5625 - 5631 . DOI:10.1016/S0032-3861(99)00778-8http://doi.org/10.1016/S0032-3861(99)00778-8.
N Hadjichristidis , A Hirao , Y Tezuka , D Prez , eds . Complex Macromolecular Architectures:Synthesis, Characterization, and Self-assembly , : New York John Wiley & Sons , 2011 . 1 - 821.
L X Hong , S H Yang , J P He . Eur Polym J , 2015 . 65 171 - 190 . DOI:10.1016/j.eurpolymj.2015.02.019http://doi.org/10.1016/j.eurpolymj.2015.02.019.
Z F Jia , D Y Yan . J Polym Sci, Part A:Polym Chem , 2005 . 43 3502 - 3509 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
D Baskaran . Macromol Chem Phys , 2001 . 202 1569 - 1575 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935.
D Baskaran . Polymer , 2003 . 44 2213 - 2220 . DOI:10.1016/S0032-3861(03)00032-6http://doi.org/10.1016/S0032-3861(03)00032-6.
W Sun , J P He , X J Wang , C Zhang , H D Zhang , Y L Yang . Macromolecules , 2009 . 42 7309 - 7317 . DOI:10.1021/ma9006768http://doi.org/10.1021/ma9006768.
H F Zhang , J P He , C Zhang , Z H Ju , J Li , Y L Yang . Macromolecules , 2012 . 45 828 - 841 . DOI:10.1021/ma2024039http://doi.org/10.1021/ma2024039.
C Xie , Z H Ju , C Zhang , Y L Yang , J P He . Macromolecules , 2013 . 46 1437 - 1446 . DOI:10.1021/ma3025317http://doi.org/10.1021/ma3025317.
C Zhang , J P He . Aust J Chem , 2014 . 67 31 - 38 . DOI:10.1071/CH13326http://doi.org/10.1071/CH13326.
Z H Ju , J P He . Chem Commun , 2014 . 50 8480 - 8483 . DOI:10.1039/C4CC01377Hhttp://doi.org/10.1039/C4CC01377H.
E Yoshida , T Ishizone , A Hirao , S Nakahama , T Takata , T Endo . Macromolecules , 1994 . 27 3119 - 3124 . DOI:10.1021/ma00090a001http://doi.org/10.1021/ma00090a001.
M H Acar , K Matyjaszewski . Macromol Chem Phys , 1999 . 200 1094 - 1100 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935.
S B Myers , R A Register . Macromolecules , 2008 . 41 5283 - 5288 . DOI:10.1021/ma800844ghttp://doi.org/10.1021/ma800844g.
T Sanji , D Sunaga , Y Muto , H Sakurai . Macromol Rapid Commun , 2003 . 24 340 - 343 . DOI:10.1002/marc.200390053http://doi.org/10.1002/marc.200390053.
C Zhang , Y L Yang , J P He . Macromolecules , 2013 . 46 3985 - 3994 . DOI:10.1021/ma4006457http://doi.org/10.1021/ma4006457.
Lifeng Chen , Junpo He . Acta Polymerica Sinica , 2015 . ( 8 ): 973 - 981 . http://www.gfzxb.org/CN/abstract/abstract14356.shtml.
陈 李峰 , 何 军坡 . 高分子学报 , 2015 . ( 8 ): 973 - 981 . http://www.gfzxb.org/CN/abstract/abstract14356.shtml.
S Kumagai , K Nagai , K Satoh , M Kamigaito . Macromolecules , 2010 . 43 7523 - 7531 . DOI:10.1021/ma101420uhttp://doi.org/10.1021/ma101420u.
G G H Schulz , H HöCker . Makromol Chem , 1977 . 178 2589 - 2594 . DOI:10.1002/macp.1977.021780909http://doi.org/10.1002/macp.1977.021780909.
H L Hsieh , R P Quirk . Anionic Polymerization:Principles and Practical Applications , : New York Marcel Dekker , 1996 . 357 - 366.
R P Quirk , T Yoo , Y Lee , J Kim , B Lee . Adv Polym Sci , 2000 . 153 67 - 162 . DOI:10.1007/3-540-46414-Xhttp://doi.org/10.1007/3-540-46414-X.
A H E Müller , D Y Yan , M Wulkow . Macromolecules , 1997 . 30 7015 - 7023 . DOI:10.1021/ma9619187http://doi.org/10.1021/ma9619187.
G I Litvinenko , P F W Simon , A H E Müller . Macromolecules , 1999 . 32 2410 - 2419 . DOI:10.1021/ma981548hhttp://doi.org/10.1021/ma981548h.
G I Litvinenko , P F W Simon , A H E Müller . Macromolecules , 2001 . 34 2418 - 2426 . DOI:10.1021/ma000641ehttp://doi.org/10.1021/ma000641e.
D Y Yan , A H E Müller , K Matyjaszewski . Macromolecules , 1997 . 30 7024 - 7033 . DOI:10.1021/ma961919zhttp://doi.org/10.1021/ma961919z.
P J G Coutinho , E M S Castanheira , M C Rei , M E C D Real Oliveira . J Phy Chem B , 2002 . 106 12841 - 12846 . DOI:10.1021/jp026479uhttp://doi.org/10.1021/jp026479u.
D Y Yan , Y F Zhou , J Hou . Science , 2004 . 303 65 - 67 . DOI:10.1126/science.1090763http://doi.org/10.1126/science.1090763.
W Tao , Y Liu , B B Jiang , S R Yu , W Huang , Y F Zhou , D Y Yan . J Am Chem Soc , 2012 . 134 762 - 764 . DOI:10.1021/ja207924whttp://doi.org/10.1021/ja207924w.
Y Y Mai , Y F Zhou , D Y Yan . Macromolecules , 2005 . 38 8679 - 8686 . DOI:10.1021/ma051377yhttp://doi.org/10.1021/ma051377y.
Y Liu , C Y Yu , H B Jin , B B Jiang , X Y Zhu , Y F Zhou , Z Y Lu , D Y Yan . J Am Chem Soc , 2013 . 135 4765 - 4770 . DOI:10.1021/ja3122608http://doi.org/10.1021/ja3122608.
W F Jiang , Y F Zhou , D Y Yan . Chem Soc Rev , 2015 . 44 3874 - 3889 . DOI:10.1039/C4CS00274Ahttp://doi.org/10.1039/C4CS00274A.
H B Jin , W Huang , X Y Zhu , Y F Zhou , D Y Yan . Chem Soc Rev , 2012 . 41 5986 - 5997 . DOI:10.1039/c2cs35130ghttp://doi.org/10.1039/c2cs35130g.
R Hu , N L C Leung , B Z Tang . Chem Soc Rev , 2014 . 43 4494 - 4562 . DOI:10.1039/c4cs00044ghttp://doi.org/10.1039/c4cs00044g.
0
Views
15
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution