Polyelectrolyte multilayer films were fabricated by layer-by-layer deposition of polyacrylic acid (PAA) and polyethyleneimine (PEI). The (PAA/PEI) films showed unique dynamic properties owning to the high mobility of the polymer molecules:the spongy microporous structure was formed through an acid treatment for 60 min; and the porous structure disappeared under a 100% relative humidity treatment
back to a solid film. Based on this (PAA/PEI) platform
lysozyme was easily loaded into the film via a wicking action in 5 s
and then easily immobilized into the film after 8 h conservation in humid atmosphere
providing therefore a novel approach to prepare antibacterial coating without any specific requirement for the characteristic of the agents. Scanning electron microscope was employed to show the dynamic transformation of film structures
from the original film with 9.5 nm of thickness to spongy sporous film with 68 nm of thickness and back to the solid film of 12 nm after the conservation process. Confocal scanning laser microscope image showed an even distribution of lysozyme in the film with lysozyme labelled by FITC. Loading quantity and the release dynamics of lysozyme were tested utilizing ultraviolet-visible spectrophotometer. Further
gram positive bacteria
S. aureus
and gram negative bacteria
E. coli
were tested in the antibacterial assay. The result illustrated that the coating was able to kill
S. aureus
efficiently
and the antibacterial activity of lysozyme was not affected by such loading and releasing process. To further enhance the bactericidal effect of the coating against gram negative bacteria
lysozyme and lactoferrin
which have synergistic killing effect on gram negative bacteria
were immobilized into the film at the same time and performed a distinct higher antibacterial efficiency against
E. coli
in comparison with the (PEI/PAA)
15
-lysozyme coating
revealing the attractive potential of this film as antibacterial coatings for medical devices to prevent the hospital-associated infections.
M Klevens , R Edwards , L Richards , C Horan , P Gaynes , A Pollock , M Cardo . Public Health Rep , 2007 . 122 ( 2 ): 160 - 166 . DOI:10.1177/003335490712200205http://doi.org/10.1177/003335490712200205.
M Cloutier , D Mantovani , F Rosei . Trends Biotechnol , 2015 . 33 ( 11 ): 637 - 652 . DOI:10.1016/j.tibtech.2015.09.002http://doi.org/10.1016/j.tibtech.2015.09.002.
D G Gao , X Y Duan , C Chen , B Lyu , J Z Ma . Ind Eng Chem Res , 2015 . 54 ( 43 ): 10560 - 10567 . DOI:10.1021/acs.iecr.5b02509http://doi.org/10.1021/acs.iecr.5b02509.
I Matai , A Sachdev , P Dubey , U Kumar , B Bhushan , P Gopinath . Colloid Surface B , 2014 . 115 359 - 367 . DOI:10.1016/j.colsurfb.2013.12.005http://doi.org/10.1016/j.colsurfb.2013.12.005.
J Min , D Braatz , T Hammond . Biomaterials , 2014 . 35 ( 8 ): 2507 - 2517 . DOI:10.1016/j.biomaterials.2013.12.009http://doi.org/10.1016/j.biomaterials.2013.12.009.
K Allen , J Donato , H Wang , A Cloud-Hansen , J Davies , J Handelsman . Nat Rev Microbiol , 2010 . 8 ( 4 ): 251 - 259 . DOI:10.1038/nrmicro2312http://doi.org/10.1038/nrmicro2312.
D Alves , O Pereira . Biofouling , 2014 . 30 ( 4 ): 483 - 499 . DOI:10.1080/08927014.2014.889120http://doi.org/10.1080/08927014.2014.889120.
M Simmaco , G Mignogna , D Barra . Biopolymers , 1998 . 47 ( 6 ): 435 - 450 . DOI:10.1002/(SICI)1097-0282(1998)47:6<>1.0.CO;2-Whttp://doi.org/10.1002/(SICI)1097-0282(1998)47:6<>1.0.CO;2-W.
M Ding , L Shao , J Liu , G Xiao , J Chen . Colloid Interface Sci , 2005 . 290 ( 1 ): 102 - 106 . DOI:10.1016/j.jcis.2005.04.029http://doi.org/10.1016/j.jcis.2005.04.029.
S Li , J Mulloor , L Wang , Y Ji , J Mulloor , M Micic , J Orbulescu , M Leblanc . ACS Appl Mater Interfaces , 2014 . 6 ( 8 ): 5704 - 5712 . DOI:10.1021/am500254ehttp://doi.org/10.1021/am500254e.
K Muszanska , J Busscher , A Herrmann , C van der Mei , W Norde . Biomaterials , 2011 . 32 ( 26 ): 6333 - 6341 . DOI:10.1016/j.biomaterials.2011.05.016http://doi.org/10.1016/j.biomaterials.2011.05.016.
S Yuan , D Wan , B Liang , O Pehkonen , Y P Ting , G Neoh , T Kang . Langmuir , 2011 . 27 ( 6 ): 2761 - 74 . DOI:10.1021/la104442fhttp://doi.org/10.1021/la104442f.
Z Tang , Y Wang , P Podsiadlo , N Kotov . Adv Mater , 2007 . 18 ( 24 ): 3203 - 3224.
X C Chen , K F Ren , J H Zhang , D D Li , E Zhao , Z J Zhao , Z K Xu , J Ji . Adv Funct Mater , 2015 . 25 ( 48 ): 7470 - 7477 . DOI:10.1002/adfm.v25.48http://doi.org/10.1002/adfm.v25.48.
D Mendelsohn , J Barrett , V Chan , J Pal , M Mayes , F Rubner . Langmuir , 2000 . 16 ( 11 ): 5017 - 5023 . DOI:10.1021/la000075ghttp://doi.org/10.1021/la000075g.
Y Li , X Wang , J Q Sun . Chem Soc Rev , 2012 . 41 ( 18 ): 5998 - 6009 . DOI:10.1039/c2cs35107bhttp://doi.org/10.1039/c2cs35107b.
K F Ren , Y X Wang , J Ji , Q K Lin , J C Shen . Colloid Surface B , 2005 . 46 ( 2 ): 63 - 69 . DOI:10.1016/j.colsurfb.2005.09.004http://doi.org/10.1016/j.colsurfb.2005.09.004.
A Lichter , J van Vliet , F Rubner . Macromolecules , 2009 . 42 ( 22 ): 8573 - 8586 . DOI:10.1021/ma901356shttp://doi.org/10.1021/ma901356s.
G Kim , G Park . Biotechnol Progr , 2006 . 22 ( 4 ): 1108 - 1113 . DOI:10.1021/bp060039thttp://doi.org/10.1021/bp060039t.
Y Kacar , Y Arica . Food Chem , 2001 . 75 ( 3 ): 325 - 332 . DOI:10.1016/S0308-8146(01)00208-4http://doi.org/10.1016/S0308-8146(01)00208-4.
A Lichter , F Rubner . Langmuir , 2009 . 25 ( 13 ): 7686 - 7694 . DOI:10.1021/la900349chttp://doi.org/10.1021/la900349c.
W X Lei , X C Chen , M Hu , H Chang , H Xu , K F Ren , J Ji . J Mater Chem B , 2016 . 4 ( 38 ): 6358 - 6365 . DOI:10.1039/C6TB01967Fhttp://doi.org/10.1039/C6TB01967F.
A Zdybicka-Barabas , S Staczek , P Mak , K Skrzypiec , E Mendyk , M Cytrynska . Bba-Biomembranes , 2013 . 1828 ( 6 ): 1449 - 1456 . DOI:10.1016/j.bbamem.2013.02.004http://doi.org/10.1016/j.bbamem.2013.02.004.
Hongfang Wang , Yi Liu , Zhongfeng Yao , Ruitong Dai , Xingmin Li , Wenjie Yan . The Processing of Agricultural Products , 2011 . ( 7 ): 36 - 40 . http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm.
Adsorption Behavior of Lysozyme by Sponge-like Materials Based on Electrospinning
Preparation and Characterization of Photo-crosslinked Layer-by-Layer (LBL) Self-assembled Antibacterial Films
Fabrication of (Heparin/Chitosan Oligosaccharides/Pluronic) Multilayer Films via Electrostatic Layer-by-Layer Assembly
Related Author
No data
Related Institution
College of Chemistry and Chemical Engineering, Qingdao University
Materials Science and Engineering, Shandong University of Technology
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology
School of Materials Science and Engineering, Shanghai University
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences