浏览全部资源
扫码关注微信
1.江南大学食品科学与技术国家重点实验室 无锡 214122
2.江南大学食品学院 无锡 214122
3.江苏省食品安全与质量控制协同创新中心 无锡 214122
Published:2017-5,
Received:3 September 2016,
Revised:30 September 2016,
扫 描 看 全 文
Jin-hua Hu, Yan-bo Li, Peng Zhou. Studies on Protein Adsorption onto Hydroxyapatite Surface. [J]. Acta Polymerica Sinica (5):811-819(2017)
Jin-hua Hu, Yan-bo Li, Peng Zhou. Studies on Protein Adsorption onto Hydroxyapatite Surface. [J]. Acta Polymerica Sinica (5):811-819(2017) DOI: 10.11777/j.issn1000-3304.2017.16269.
考察了酪蛋白酸钠(sodium caseinate,SC)和乳清分离蛋白(whey protein isolate,WPI)在表面性质不同的3种羟基磷灰石(hydroxyapatite,HA)颗粒上的界面吸附,分析了蛋白质的分子构型和HA颗粒的表面性质等因素对蛋白质在HA界面吸附的影响,重点讨论了SC和WPI肽链上磷酸化丝氨酸基团(phosphorylated serine residues,Ser-P)的数量和分布对吸附差异的影响.通过傅里叶变换红外光谱和表面电位分析发现SC和WPI无法被比表面积较小的HA颗粒有效吸附,但是在有效吸附面积较高的球状纳米HA和棒状微米HA上能够被吸附. Ser-P的存在使得SC在HA界面的吸附量更高、吸附能力更强. Ser-P数量和分布的不同则导致了SC中不同的蛋白组分在HA界面的竞争性吸附:
β
-酪蛋白在2μmHA界面始终存在优先吸附性;当纳米HA的浓度低于15 mg/mL时,纳米HA界面会优先吸附
α
s
-酪蛋白.
Protein adsorption on hydroxyapatite (HA) particle surface was investigated in this study
in which sodium caseinate (SC) and whey protein isolates (WPI) were selected as the protein models with different configuration. Besides
SC was phosphorylated protein containing different protein components
while WPI was non-phosphorylated protein. The phosphorylated serine residues (Ser-P) on protein could bind calcium ions on HA particle. The adsorption of protein on calcium salts was discussed using both nano-sized (256 nm) and micron-sized (2μm and 17μm) HA particles. The physicochemical properties of HA particle surface with or without the adsorption of SC and WPI were characterized by Fourier transform infrared spectroscopy and ζ-potential measurement. The results confirmed the proteins adsorption on the surface of HA particles with the diameters of 256 nm and 2μm. Moreover
an insignificant interaction between HA particles with limited specific surface area was observed
compared with the particles with larger specific surface area. The protein components of suspension supernatants after adsorption were analyzed by SDS-PAGE. The existence of Ser-P increased the protein adsorption and a larger amount of SC was thus adsorbed on the HA surface compared to WPI (non-phosphorylated protein). The competitive adsorption onto HA surface between
α
s1
-SC and
β
-SC was further discussed from the difference of the number and distribution of Ser-P on the peptide chain. The
α
s1
-SC and
β
-SC are multi-phosphorylated with a conserved cluster sequence of 3 Ser-P followed by 2 glutamic acid residues. There are totally 8 Ser-P for
α
s1
-SC and 5 for
β
-SC. Micro-sized HA was observed to preferentially adsorb
β
-SC for various concentrations of HA particles. When the concentration of nano-sized HA was below 15 mg/mL
there was a preferred adsorption of
α
s1
-casein over
β
-SC. The competitive adsorption onto HA surface between
α
s1
-SC and
β
-SC may be caused by the difference of the number and distribution of Ser-P.
磷酸化丝氨酸羟基磷灰石界面吸附酪蛋白酸钠乳清分离蛋白
Phosphorylated serine residuesHydroxyapatiteProtein adsorptionSodium caseinateWhey protein isolate
M Wahlgren , T Arnebrant . . Trends Biotechnol , 1991 . 9 ( 6 ): 201 - 208.
Xin Li , Qian Yu , Yanxia Zhang , Zhaoqiang Wu , Hong Chen . . Acta Polymerica Sinica , 2011 . ( 8 ): 812 - 81 . http://www.gfzxb.org/CN/abstract/abstract13517.shtml.
李 鑫 , 于 谦 , 张 燕霞 , 武 照强 , 陈 红 . . 高分子学报 , 2011 . ( 8 ): 812 - 81 . http://www.gfzxb.org/CN/abstract/abstract13517.shtml.
J O'Brien , K J Shea . . Acc Chem Res , 2016 . 49 ( 6 ): 1200 - 1210 . DOI:10.1021/acs.accounts.6b00125http://doi.org/10.1021/acs.accounts.6b00125.
S A Bhakta , E Evans , T E Benavidez , C D Garcia . . Anal Chim Acta , 2015 . 872 7 - 25 . DOI:10.1016/j.aca.2014.10.031http://doi.org/10.1016/j.aca.2014.10.031.
B Kharazian , N L Hadipour , M R Ejtehadi . . Int J Biochem Cell B , 2016 . 75 162 - 174 . DOI:10.1016/j.biocel.2016.02.008http://doi.org/10.1016/j.biocel.2016.02.008.
Schmidt D R, Waldeck H, Kao W J. Protein Adsorption to Biomaterials. In:Puleo D A, Bizios R, eds. Biological Interactions on Materials Surfaces. New York:Springer, 2009. 1-18
H Cai , P Yao . . Colloid Surface B , 2014 . 123 900 - 906 . DOI:10.1016/j.colsurfb.2014.10.042http://doi.org/10.1016/j.colsurfb.2014.10.042.
K Nakanishi , T Sakiyama , K Imamura . . J Biosci Bioeng , 2001 . 91 ( 3 ): 233 - 244 . DOI:10.1016/S1389-1723(01)80127-4http://doi.org/10.1016/S1389-1723(01)80127-4.
L Shen , J Zhu . . Adv Colloid Interface Sci , 2016 . 228 40 - 54 . DOI:10.1016/j.cis.2015.11.008http://doi.org/10.1016/j.cis.2015.11.008.
M Tanaka , S Abiko , T Himeiwa , T Kinoshita . . J Colloid Interf Sci , 2015 . 442 82 - 88 . DOI:10.1016/j.jcis.2014.11.021http://doi.org/10.1016/j.jcis.2014.11.021.
W H Lee , C Y Loo , R Rohanizadeh . . Colloid Surface B , 2014 . 122 823 - 834 . DOI:10.1016/j.colsurfb.2014.07.029http://doi.org/10.1016/j.colsurfb.2014.07.029.
K Makrodimitris , D L Masica , E T Kim , J J Gray . . JACS , 2007 . 129 ( 44 ): 13713 - 13722 . DOI:10.1021/ja074602vhttp://doi.org/10.1021/ja074602v.
D Bellucci , A Sola , V Cannillo . . J Biomed Mater Res A , 2016 . 104 ( 4 ): 1030 - 1056 . DOI:10.1002/jbma.v104.4http://doi.org/10.1002/jbma.v104.4.
T Kawasaki , M Niikura , Y Kobayashi . . J Chromatogr A , 1990 . 515 125 - 148 . DOI:10.1016/S0021-9673(01)89307-9http://doi.org/10.1016/S0021-9673(01)89307-9.
T Kawasaki . . J Chromatogr A , 1991 . 544 147 - 184 . DOI:10.1016/S0021-9673(01)83984-4http://doi.org/10.1016/S0021-9673(01)83984-4.
P A Price , J W Poser , N Raman . . PNAS , 1976 . 73 ( 10 ): 3374 - 3375 . DOI:10.1073/pnas.73.10.3374http://doi.org/10.1073/pnas.73.10.3374.
G K Hunter , H A Goldberg . . Biochem J , 1994 . 302 175 - 179 . DOI:10.1042/bj3020175http://doi.org/10.1042/bj3020175.
Z Xu , Y Yang , Z Wang , D Mkhonto , C Shang , Z P Liu , Q Cui , N Sahai . . J Comput Chem , 2014 . 35 ( 1 ): 70 - 81 . DOI:10.1002/jcc.v35.1http://doi.org/10.1002/jcc.v35.1.
D G Dalgleish . . Soft Matter , 2011 . 7 2265 - 2272 . DOI:10.1039/C0SM00806Khttp://doi.org/10.1039/C0SM00806K.
C Holt . . Int Dairy J , 2016 . 60 2 - 13 . DOI:10.1016/j.idairyj.2016.01.004http://doi.org/10.1016/j.idairyj.2016.01.004.
C Broyard , F Gaucheron . . Dairy Sci Technol , 2015 . 95 831 - 862 . DOI:10.1007/s13594-015-0220-yhttp://doi.org/10.1007/s13594-015-0220-y.
D C Thorn , H Ecroyd , J A Carver , C Holt . . Int Dairy J , 2015 . 46 2 - 11 . DOI:10.1016/j.idairyj.2014.07.008http://doi.org/10.1016/j.idairyj.2014.07.008.
D J McMahon , B S Oommen . . J Dairy Sci , 2008 . 91 ( 5 ): 1709 - 1721 . DOI:10.3168/jds.2007-0819http://doi.org/10.3168/jds.2007-0819.
S Perego , E D Favero , P D Luca , F D Piaz , A Fiorilli , L Cantu , A Ferraretto . . Food Funct , 2015 . 6 1796 - 1807 . DOI:10.1039/C4FO00672Khttp://doi.org/10.1039/C4FO00672K.
C Holt , C G D Kruif , R Tuinier , P A Timmins . . Colloid Surface A , 2003 . 213 ( 2-3 ): 275 - 284 . DOI:10.1016/S0927-7757(02)00520-4http://doi.org/10.1016/S0927-7757(02)00520-4.
C Holt , J A Carver , H Ecroyd , D C Thorn . . J Dairy Sci , 2013 . 96 ( 10 ): 6127 - 6146 . DOI:10.3168/jds.2013-6831http://doi.org/10.3168/jds.2013-6831.
L J Wen , D S Liu , J H Hu , X M Liu , J M Regenstein , P Zhou . . Food Hydrocolloid , 2016 . 52 311 - 316 . DOI:10.1016/j.foodhyd.2015.07.002http://doi.org/10.1016/j.foodhyd.2015.07.002.
A K Nayak . . Int J Chem Tech Res , 2010 . 2 ( 2 ): 903 - 907.
K K Chittur . . Biomaterials , 1998 . 19 ( 4-5 ): 357 - 369 . DOI:10.1016/S0142-9612(97)00223-8http://doi.org/10.1016/S0142-9612(97)00223-8.
H Zeng , K K Chittur , W R Lacefield . . Biomaterials , 1999 . 20 ( 4 ): 377 - 384 . DOI:10.1016/S0142-9612(98)00184-7http://doi.org/10.1016/S0142-9612(98)00184-7.
N Brandes , P B Welzel , C Werner , L W Kroh . . J Colloid Interf Sci , 2006 . 299 ( 1 ): 56 - 69 . DOI:10.1016/j.jcis.2006.01.065http://doi.org/10.1016/j.jcis.2006.01.065.
R M Silverstein , F X Webster , D J Kiemle , D L Bryce . Spectrometric Identification of Organic Compounds , 5th ed : New York John Wiley & Sons, Inc. , 1991 . 91 - 164.
P I Haris , F Severcan . . J Mol Catal B:Enzym , 1999 . 7 ( 1-4 ): 207 - 221 . DOI:10.1016/S1381-1177(99)00030-2http://doi.org/10.1016/S1381-1177(99)00030-2.
J Reyes-Gasga , E L Martínez-Piñeiro , G Rodríguez-Álvarez , G E Tiznado-Orozco , R García-García , E F Brès . . Mater Sci Eng C , 2013 . 33 ( 8 ): 4586 - 4574.
P Trieu-Cuot , J C Gripon . . J Dairy Res , 1981 . 48 ( 2 ): 303 - 310 . DOI:10.1017/S0022029900021725http://doi.org/10.1017/S0022029900021725.
O'Mahony J A, Fox P F. Milk proteins:introduction and historical aspects. In:McSweeney P L H, Fox P F, eds. Advanced Dairy Chemistry, 4th ed. New York:Springer, 2013. 43-85
G Bernardi , T Kawasaki . . Bba-Protein Struct M , 1968 . 160 ( 3 ): 301 - 310 . DOI:10.1016/0005-2795(68)90203-1http://doi.org/10.1016/0005-2795(68)90203-1.
Q Luo , J D Andrade . . J Colloid Interf Sci , 1998 . 200 ( 1 ): 104 - 113 . DOI:10.1006/jcis.1997.5364http://doi.org/10.1006/jcis.1997.5364.
C V Morr , E Y Ha . . Crit Rev Food Sci , 1993 . 33 ( 6 ): 431 - 476 . DOI:10.1080/10408399309527643http://doi.org/10.1080/10408399309527643.
L Tercinier , A Ye , H Singh , S Anema , A Singh . . J Colloid Interf Sci , 2013 . 394 458 - 466 . DOI:10.1016/j.jcis.2012.11.058http://doi.org/10.1016/j.jcis.2012.11.058.
M Srinivasan , H Singh , P A Munro . . Int Dairy J , 1999 . 9 ( 3-6 ): 337 - 341 . DOI:10.1016/S0958-6946(99)00084-9http://doi.org/10.1016/S0958-6946(99)00084-9.
Huppertz T. Chemistry of the Caseins. In:McSweeney P L H, Fox P F, eds. Advanced Dairy Chemistry, 4th ed. New York:Springer, 2013. 135-160
Fox P F, Kelly A L. The caseins. In:Yada R Y, ed. Proteins in Food Processing. Cambridge:Woodhead Publishing Ltd. 2004. 36-40
0
Views
14
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution