浏览全部资源
扫码关注微信
中国科学院上海应用物理研究所 上海 201800
Published:20 February 2017,
Received:5 September 2016,
Revised:3 November 2016,
扫 描 看 全 文
Jing-ye Li, Zi-qiang Wang, Ming Yu. Preparation of Dynamic Superhydrophobic Cotton Fabric
Jing-ye Li, Zi-qiang Wang, Ming Yu. Preparation of Dynamic Superhydrophobic Cotton Fabric
以棉织物为基材,利用
γ
-射线辐射引发甲基丙烯酸十二烷基酯(LMA)接枝聚合,使聚苯乙烯(PS)纳米微球通过接枝链以共价键固定到棉织物上,从而在棉织物表面构筑低表面能的纳米尺度粗糙结构,获得低滚动角的动态超疏水棉织物.傅里叶变换红外光谱(FTIR)分析证明通过辐射接枝,在棉织物上存在PLMA接枝链和PS纳米微球.扫描电子显微镜(SEM)表征证明了PS纳米微球的固定使得棉织物表面呈现纳米尺度的粗糙结构.接触角测试结果证明所获棉织物具有超疏水性能,且相对于仅接枝LMA的改性棉织物,PS纳米微球的固定可以显著降低水滴的滚动角,实现动态超疏水的效果.通过抗弯刚度的测量表征了改性前后棉织物的柔软度,结果表明辐射接枝方法对棉织物的柔软度改变不大,不影响穿着性能.
With cotton fabrics as substrates
γ
-ray irradiation was used to initiate the graft polymerization of lauryl methacrylate (LMA)
to attach polystyrene (PS) nanospheres to the cotton fabrics in by covalent bonding
via
the grafted chains
form a nano-scale coarse structure with low surface energy on the surface of cotton fabrics
and obtain dynamic superhydrophobic cotton fabrics with a low water droplet sliding angle. The grafting kinetics was studied and the degree of grafting (DG) increased regularly with the increasing of the concentration of the monomer. Therefore the DG could be controlled by changing the conditions of the graft polymerization. Fourier transform infrared spectroscopy (FTIR) analyses were carried out on the cotton fabrics after the graft and the results confirmed the presence of PS nanospheres and grafted PLMA chains on the modified cotton fabrics. Scanning electron microscopy (SEM) analysis showed that the attachment of the PS nanospheres onto the cotton fabrics led to the formation of a nanoscale coarse structure on the surface of the cotton fibers. The contact angle of water droplet on the modified cotton fabric was higher than 150°
which demonstrated that the modified cotton fabrics were superhydrophobic. Relative to the cotton fabrics solely grafted with LMA
the PS nanospheres-decorated cotton fabrics had a significantly reduced water droplet sliding angle
and possessed dynamic superhydrophobicity. This should be attributed to the "lotus effect" of the surface of the modified cotton fabrics containing low surface energy and regular nano-scale roughness structure formed by the attachment of PS nanospheres. The softness of the cotton fabrics was characterized through the measurements of their flexural rigidity before and after their modification. The results showed that radiation-induced graft polymerization of LMA and the immobilization of PS nanospheres did not influence the wearability of the cotton fabrics
as it did not have a significant effect on their softness.
动态超疏水辐射接枝棉织物滚动角
Dynamic superhydrophobicRadiation-induced graft polymerizationCotton fabricsSliding angle
Lei Jiang , Lin Feng . Bioinspired Intelligent Nanostructured Interfacial Materials , : Beijing Chemical Industry Press , 2007 . 165 - 209.
江 雷 , 冯 琳 . 仿生智能纳米界面材料 , : 北京 化学工业出版社 , 2007 . 165 - 209.
L Feng , S Li , Y Li , H Li , L Zhang , J Zhai , Y Song , B Liu , L Jiang , D Zhu . Adv Mater , 2002 . 14 1857 - 1860 . DOI:10.1002/adma.200290020http://doi.org/10.1002/adma.200290020.
W Choi , A Tuteja , S Chhatre , J M Mabry , R E Cohen , G H McKinley . Adv Mater , 2009 . 21 2190 - 2195 . DOI:10.1002/adma.v21:21http://doi.org/10.1002/adma.v21:21.
B Wang , Z Guo . Appl Phys Lett , 2013 . 103 063704 DOI:10.1063/1.4817922http://doi.org/10.1063/1.4817922.
Z Shi , W Zhang , F Zhang , X Liu , D Wang , J Jin , L Jiang . Adv Mater , 2013 . 25 2422 - 2427 . DOI:10.1002/adma.v25.17http://doi.org/10.1002/adma.v25.17.
T Piotr , M Marie , Q David . Langmuir , 2009 . 25 7214 - 7216 . DOI:10.1021/la900929uhttp://doi.org/10.1021/la900929u.
L Mishchenko , B Hatton , V Bahadur , J A Taylor , T Krupenkin , J Aizenberg . ACS Nano , 2010 . 4 7699 - 7707 . DOI:10.1021/nn102557phttp://doi.org/10.1021/nn102557p.
Anfu Chen , Hanxiong Huang , Weisheng Guan . Acta Polymerica Sinica , 2015 . ( 3 ): 245 - 251 . http://www.gfzxb.org/CN/abstract/abstract14240.shtml.
陈 安伏 , 黄 汉雄 , 关 伟盛 . 高分子学报 , 2015 . ( 3 ): 245 - 251 . http://www.gfzxb.org/CN/abstract/abstract14240.shtml.
A Tuteja , W Choi , J M Mabry , G H McKinley , R E Cohen . Proc Nat Acad Sci , 2008 . 105 18200 - 18205 . DOI:10.1073/pnas.0804872105http://doi.org/10.1073/pnas.0804872105.
H F Hoefnagels , D Wu , G de With , W Ming . Langmuir , 2007 . 23 13158 - 13163 . DOI:10.1021/la702174xhttp://doi.org/10.1021/la702174x.
G Li , H Zheng , Y Wang , H Wang , Q Dong , R Bai . Polymer , 2010 . 51 1940 - 1946 . DOI:10.1016/j.polymer.2010.03.002http://doi.org/10.1016/j.polymer.2010.03.002.
B Deng , R Cai , Y Yu , H Q Jiang , C L Wang , J Li , L F Li , M Yu , J Y Li , L D Xie , Q Huang , C H Fan . Adv Mater , 2010 . 22 5473 - 5477 . DOI:10.1002/adma.v22.48http://doi.org/10.1002/adma.v22.48.
J Wu , J Li , B Deng , H Jiang , Z Wang , M Yu , L Li , C Xing , Y Li . Sci Rep , 2013 . 3 2951 .
J Wu , J Li , Z Wang , M Yu , H Jiang , L Li , B Zhang . RSC Adv , 2015 . 5 27752 - 27758 . DOI:10.1039/C5RA01028Dhttp://doi.org/10.1039/C5RA01028D.
F Xia , L Jiang . Adv Mater , 2008 . 20 2842 - 2858 . DOI:10.1002/adma.v20:15http://doi.org/10.1002/adma.v20:15.
C R Crick , I P Parkin . Chem Eur J , 2010 . 16 3568 - 3588 . DOI:10.1002/chem.v16:12http://doi.org/10.1002/chem.v16:12.
A Tuteja , W Choi , M Ma , J M Mabry , S A Mazzella , G C Rutledge , G H McKinley , R.E Cohen . Science , 2007 . 318 1618 - 1622 . DOI:10.1126/science.1148326http://doi.org/10.1126/science.1148326.
M Yu , Z Wang , H Liu , S Xie , J Wu , H Jiang , J Zhang , L Li , J Li . ACS Appl Mater Interf , 2013 . 5 3697 - 3703 . DOI:10.1021/am400304shttp://doi.org/10.1021/am400304s.
J Zhao , B Deng , M Lv , J Li , Y Zhang , H Jiang , C Peng , J Li , J Shi , Q Huang , C Fan . Adv Healthcare Mater , 2013 . 2 1259 - 1266 . DOI:10.1002/adhm.v2.9http://doi.org/10.1002/adhm.v2.9.
M Yu , W Li , Z Wang , B Zhang , H Ma , L Li , J Li . Sci Rep , 2016 . 6 22796 DOI:10.1038/srep22796http://doi.org/10.1038/srep22796.
0
Views
20
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution