浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
Published:20 February 2017,
Received:11 September 2016,
Revised:24 October 2016,
扫 描 看 全 文
Lin Lin, Zhao-pei Guo, Jie Chen, Hua-yu Tian, Xue-si Chen. Synthesis and Characterization of Polyphenylalanine Grafted Low Molecular Weight PEI as Efficient Gene Carriers. [J]. Acta Polymerica Sinica (2):321-328(2017)
Lin Lin, Zhao-pei Guo, Jie Chen, Hua-yu Tian, Xue-si Chen. Synthesis and Characterization of Polyphenylalanine Grafted Low Molecular Weight PEI as Efficient Gene Carriers. [J]. Acta Polymerica Sinica (2):321-328(2017) DOI: 10.11777/j.issn1000-3304.2017.16277.
分别制备了以支化小分子量聚乙烯亚胺(PEI-1.8k)为引发剂,引发苯丙氨酸-NCA开环聚合得到聚乙烯亚胺-聚苯丙氨酸(PEI1.8k-
g
-PPhe)以及聚乙烯亚胺接枝苯丙氨酸单体(PEI1.8k-
g
-Phe)的系列基因载体材料.利用核磁、粒度、zeta电位仪、荧光光度计、流式细胞仪以及激光共聚焦显微镜对PEI1.8k-
g
-PPhe,PEI1.8k-
g
-Phe以及PEI1.8k-
g
-PPhe/DNA和PEI1.8k-
g
-Phe/DNA复合物颗粒进行了系统的表征.研究结果表明,最佳转染条件下,PEI1.8k-
g
-PPhe10/DNA复合物颗粒的粒径约为150 nm,表面电位约为16 mV.在人源宫颈癌(HeLa)和人源乳腺癌(MCF-7)2种细胞系中均具有较高的基因转染效率,且最佳转染效率可达到PEI-25k的12倍.MTT细胞毒性实验分别比较了PEI1.8k-
g
-PPhe和PEI1.8k-
g
-Phe对HeLa细胞毒性的大小.从实验结果可见,苯丙氨酸引入的方式及数量决定着其细胞毒性的大小.PEI1.8k-
g
-PPhe和PEI1.8k-
g
-Phe都具有较低的细胞毒性(材料在较高浓度1 mg/mL时的细胞存活率大于70%).内吞实验结果表明,PEI1.8k-
g
-PPhe由于接入了具有规则聚合链的聚苯丙氨酸,而易于被HeLa细胞内吞.PEI1.8k-
g
-PPhe10/DNA复合物颗粒相比于PEI-25k/DNA,PEI-1.8k/DNA和PEI1.8k-
g
-PPhe/DNA具有更高的细胞内吞效率.
To search safe and evaluate non-viral nucleic acids carrier
a series of polyphenylalanine and phenylalanine grafted low molecular weight PEI with a molecular weight of 1.8×10
3
(PEI1.8k-
g
-PPhe and PEI1.8k-
g
-Phe) were prepared by NCA ring opening polymerization initiated by PEI-1.8k and phenylalanines conjugation to PEI-1.8k
respectively. The polymers and the complexes of PEI1.8k-
g
-PPhe/DNA and PEI1.8k-
g
-Phe/DNA were characterized by nuclear magnetic resonance (NMR) analysis
particle size analysis
zeta potential analysis
luciferase analysis
flow cytometry (FCM) analysis and confocal laser scan microscopy (CLSM). In order to compare the property for compacting DNA into nanoparticles
the particle size and zeta potential analysis were carried out. Both PEI1.8k-
g
-PPhe and PEI1.8k-
g
-Phe showed suitable particle size and zeta potential for gene delivery. The particle size of PEI1.8k-
g
-PPhe10/DNA complexes were about 150 nm and the zeta potentials were about +16 mV
which were suitable for the
in vitro
experiments. Moreover
cell viability
after treating with different copolymers at various concentrations
was studied by an MTT assay. The reduced cytotoxicity of PEI1.8k-
g
-PPhe and PEI1.8k-
g
-Phe may be because of the introduction of neutral hydrophobic phenylalanine moieties. And both of the PEI1.8k-
g
-PPhe and PEI1.8k-
g
-Phe had lower cytotoxicity (above 70% viability at a higher concentration 1 mg/mL) than that of PEI with a molecular weight of 2.5×10
4
(PEI-25k) in HeLa cells. The
in vitro
gene transfection of PEI1.8k-
g
-PPhe10 and PEI1.8k-
g
-Phe10 was conducted in human cervical cancer (HeLa) and breast cancer (MCF-7) cells. In both of the cells
PEI1.8k-
g
-PPhe10 exhibited much higher gene transfection efficiency. PEI1.8k-
g
-PPhe10/DNA complexes showed remarkable gene transfection efficiency
which was about twelve times higher than that of PEI-25k. The endocytosis efficiency of PEI1.8k-
g
-PPhe10/DNA and PEI1.8k-
g
-Phe10/DNA were quantified using flow cytometry. Due to their regular polymer chain
PEI1.8k-
g
-PPhe10/Cy5-DNA showed better internalization efficiency than PEI1.8k-
g
-Phe10/Cy5-DNA
PEI-25k/Cy5-DNA and PEI-1.8k/Cy5-DNA. The CLSM assay was carried out to verify the internalization efficiency together which also indicated that PEI1.8k-
g
-PPhe10/Cy5-DNA induced higher intracellular uptake efficiency than the others.
聚苯丙氨酸低分子量聚乙烯亚胺基因载体基因转染
PolyphenylalanineLow molecular weight PEIGene carriersGene transfection
S K Tripathi , N Gupta , M Mahato , K C Gupta , P Kumar . Colloid Surf B , 2014 . 115 79 - 85 . DOI:10.1016/j.colsurfb.2013.11.024http://doi.org/10.1016/j.colsurfb.2013.11.024.
J Chen , H Y Tian , X Dong , Z P Guo , Z X Jiao , F F Li , A Kano , A Marayama , X S Chen . Macromol Biosci , 2013 . 13 1438 - 1446 . DOI:10.1002/mabi.201300211http://doi.org/10.1002/mabi.201300211.
Li Zhao , Jianxun Ding , Chunsheng Xiao , Xuesi Chen , Guangqing Gai , Liyan Wang . Acta Chimica Sinica , 2015 . 73 60 - 65 . DOI:10.6023/A14110767http://doi.org/10.6023/A14110767.
赵 丽 , 丁 建勋 , 肖 春生 , 陈 学思 , 盖 广清 , 王 立艳 . 化学学报 , 2015 . 73 60 - 65 . DOI:10.6023/A14110767http://doi.org/10.6023/A14110767.
X W Guan , Y H Li , Z X Jiao , L Lin , J Chen , Z P Guo , H Y Tian , X S Chen . ACS Appl Mater Interfaces , 2015 . 7 3207 - 3215 . DOI:10.1021/am5078123http://doi.org/10.1021/am5078123.
W T Song , M Q Li , Z H Tang , Q S Li , Y Yang , H Y Liu , T C Duan , H Hong , X S Chen . Macromol Biosci , 2012 . 12 1514 - 1523 . DOI:10.1002/mabi.v12.11http://doi.org/10.1002/mabi.v12.11.
Jie Chen , Xiaozhou Li , Huayu Tian , Xiaojuan Zhu , Xuesi Chen . Chemical Journal of Chinese Universities , 2015 . 36 ( 11 ): 2148 - 2156.
陈 杰 , 李 小舟 , 田 华雨 , 朱 筱娟 , 陈 学思 . 高等学校化学学报 , 2015 . 36 ( 11 ): 2148 - 2156.
H Y Tian , J Chen , X S Chen . Small , 2013 . 9 2034 - 2044 . DOI:10.1002/smll.v9.12http://doi.org/10.1002/smll.v9.12.
J Chen , Z X Jiao , L Lin , Z P Guo , C N Xu , Y H Li , H Y Tian , X S Chen . Chinese J Polym Sci , 2015 . 33 ( 6 ): 830 - 837 . DOI:10.1007/s10118-015-1632-0http://doi.org/10.1007/s10118-015-1632-0.
J L Xia , H Y Tian , J Chen , L Lin , Z P Guo , H Y Yang , Z C Feng . Chinese J Polym Sci , 2016 . 34 316 - 323 . DOI:10.1007/s10118-016-1756-xhttp://doi.org/10.1007/s10118-016-1756-x.
S Trabulo , A M Cardoso , T Santos-Ferreira , A L Cardoso , S Simoes , M C P de Lima . Mol Pharm , 2011 . 8 1120 - 1131 . DOI:10.1021/mp100426ehttp://doi.org/10.1021/mp100426e.
Y H Wang , M Zheng , F H Meng , J Zhang , R Peng , Z Y Zhong . Biomacromolecules , 2011 . 12 1032 - 1040 . DOI:10.1021/bm101364fhttp://doi.org/10.1021/bm101364f.
C H Zhu , S Jung , S B Luo , F H Meng , X L Zhu , T G Park , Z Y Zhong . Biomaterials , 2010 . 31 2408 - 2416 . DOI:10.1016/j.biomaterials.2009.11.077http://doi.org/10.1016/j.biomaterials.2009.11.077.
T M Sun , J Z Du , Y D Yao , C Q Mao , S Dou , S Y Huang , P Z Zhang , K W Leong , E W Song , J Wang . ACS Nano , 2011 . 5 1483 - 1494 . DOI:10.1021/nn103349hhttp://doi.org/10.1021/nn103349h.
S F Peng , M T Tseng , Y C Ho , M C Wei , Z X Liao , H W Sung . Biomaterials , 2011 . 32 239 - 248 . DOI:10.1016/j.biomaterials.2010.08.081http://doi.org/10.1016/j.biomaterials.2010.08.081.
W T Godbey , K K Wu , A G Mikos . J Controlled Release , 1999 . 60 149 - 160 . DOI:10.1016/S0168-3659(99)00090-5http://doi.org/10.1016/S0168-3659(99)00090-5.
W T Godbey , K K Wu , A G Mikos . J Biomed Mater Res , 1999 . 45 268 - 275 . DOI:10.1002/(ISSN)1097-4636http://doi.org/10.1002/(ISSN)1097-4636.
W T Kuo , H Y Huang , Y Y Huang . J. Nanosci Nanotechnol , 2010 . 10 5540 - 5547 . DOI:10.1166/jnn.2010.2454http://doi.org/10.1166/jnn.2010.2454.
H M Aliabadi , B Landry , R K Bahadur . Macromol Biosci , 2011 . 11 662 - 672 . DOI:10.1002/mabi.v11.5http://doi.org/10.1002/mabi.v11.5.
A Neamnark , O Suwantong , R K Bahadur . Mol Pharm , 2009 . 6 1798 - 1815 . DOI:10.1021/mp900074dhttp://doi.org/10.1021/mp900074d.
W H Daly , D Poche . Tetrahedron Lett , 1988 . 25 5859 - 5862.
0
Views
14
下载量
7
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution