浏览全部资源
扫码关注微信
1.天津大学材料科学与工程学院 天津 300350
2.Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Ireland
Published:20 February 2017,
Received:30 September 2016,
Revised:15 November 2016,
扫 描 看 全 文
Li Si-rong, Guo Lin-ru, Gao Yong-sheng, Zhou De-zhong, Wang Wen-xin. Viscoelastic Study of Single Chain Cyclized Polymeric Nanoparticles and Linear Polymers Blends. [J]. Acta Polymerica Sinica (2):386-392(2017)
Li Si-rong, Guo Lin-ru, Gao Yong-sheng, Zhou De-zhong, Wang Wen-xin. Viscoelastic Study of Single Chain Cyclized Polymeric Nanoparticles and Linear Polymers Blends. [J]. Acta Polymerica Sinica (2):386-392(2017) DOI: 10.11777/j.issn1000-3304.2017.16304.
针对传统多乙烯基单体聚合存在过程不可控,凝胶点低等问题,提出了利用动力学控制的零价铜调控可控/活性自由基聚合方法来可控均聚双乙烯基单体二甲基丙烯酸乙二醇酯(EGDMA).研究其聚合动力学发现在聚合前期呈线性增长,且分散性指数小于1.35,而其对应的侧乙烯基单元转化率却高达28%,说明该聚合物具有新型的单链超内环化结构.将该产物作为单链聚合物纳米颗粒与线性聚甲基丙烯酸甲酯(PMMA)共混后,研究发现其黏度随纳米颗粒质量分数的增加而下降,并非Einstein模型预测的随添加颗粒的浓度增加而增加.该单链超内环化聚合物纳米颗粒具有原料方便易得,聚合过程简单高效,聚合物结构(如分子量、分子量分布、成环数目等)可控等优点.
It is of great importance to polymerize multivinyl monomers and simultaneously circumvent uncontrollable polymerization process and low gel point. Hereby
a type of divinyl monomer:ethylene glycol dimethacrylate (EGDMA) was successfully homopolymerized by kinetically controlled Cu
0
and Cu
Ⅱ
-meadiated reversible-deactivation radical polymerization (RDRP). The kinetic study showed a well-controlled polymerization behaviour. During the initial stage
a linear chain propagation was observed with a low polydispersity (
<
1.35) demonstrating the controlled/living polymerization feature. However
the products obtained during this stage showed a high consumption of pendent vinyl groups (around 28%) based on the analysis by proton nuclear magnetic resonance (
1
H-NMR). This high pendent vinyl conversion in the linear chain propagation stage is attributed to the significant involvement of the intramolecular cyclization. The promotion of the intramolecular cyclization and suppression of the intermolecular crosslinking is achieved by the low kinetic chain length and low polymer volume concentration. Given the coexistence of linear chain propagation and high pendent vinyl conversion
the novel single chain cyclized polymer structure was formed during this process
which was further used as polymeric nanoparticles to modify the viscoelasticity of linear poly (methyl methacrylate) (PMMA) melts. The essentially similar chemical structure between the EGDMA and MMA ensures the minimization of enthalpic interactions and dispersion forces between the nanoparticles and linear melts. The oscillatory rheology study and the subsequent time temperature superposition based on the Williams-Landel-Ferry equation demonstrated the coexistence of the segmental relaxation at high frequencies and chain relaxation at low frequencies. The complex viscosity studied as a function of the shear frequency showed the decrease in terminal viscosity with addition of 10 wt% single chain cyclized polyEGDMA nanoparticles. A further decrease was also observed with the addition of 20 wt% nanoparticles
which is not in agreement with Einstein relationship between the complex viscosity and fraction of added particles. This strategy provides a simple and efficient approach to control polymerization of multivinyl monomers
and the unexpected decrease in viscosity of the blend system should in principle open a new avenue to modify polymer melts and molten systems.
自由基聚合多乙烯基单体聚合物纳米颗粒黏弹性
Free radical polymerizationMultivinyl monomersPolymeric nanoparticlesViscoelasticty
O Altintas , K Barner-Kowollik . . Macromol Rapid Commun , 2016 . 37 ( 1 ): 29 - 46 . DOI:10.1002/marc.v37.1http://doi.org/10.1002/marc.v37.1.
A M Hanlon , C K Lyon , E B Berda . . Macromolecules , 2016 . 49 ( 1 ): 2 - 14 . DOI:10.1021/acs.macromol.5b01456http://doi.org/10.1021/acs.macromol.5b01456.
M Gonzalez-Burgos , A Latorre-Sanchez , J Pomposo . . Chem Soc Rev , 2015 . 44 ( 17 ): 6122 - 6142 . DOI:10.1039/C5CS00209Ehttp://doi.org/10.1039/C5CS00209E.
E Harth , B V Horn , V Y Lee , D S Germack ,C P Gonzales , R D Miller , C J Hawker . . J Am Chem Soc , 2002 . 124 ( 29 ): 8653 - 8660 . DOI:10.1021/ja026208xhttp://doi.org/10.1021/ja026208x.
B S Murray . . Fulton D A, Macromolecules , 2011 . 44 ( 18 ): 7242 - 7252 . DOI:10.1021/ma201331fhttp://doi.org/10.1021/ma201331f.
T Terashima , T Mes , T F A De-Greef , M A J Gillissen , P Besenius , A R A Palmans , E W Meijer . . J Am Chem Soc , 2011 . 133 ( 13 ): 4742 - 4745 . DOI:10.1021/ja2004494http://doi.org/10.1021/ja2004494.
T Mes , R van der Weegen , A R A Palmans , E W Meijer . . Angew Chem Int Ed , 2011 . 50 ( 22 ): 5085 - 5089 . DOI:10.1002/anie.v50.22http://doi.org/10.1002/anie.v50.22.
P J Flory . . J Am Chem Soc , 1941 . 63 3096 - 3100 . DOI:10.1021/ja01856a063http://doi.org/10.1021/ja01856a063.
W H Stockmayer . . J Chem Phys , 1944 . 12 ( 4 ): 125 - 131 . DOI:10.1063/1.1723922http://doi.org/10.1063/1.1723922.
D T Landin , C W Macosko . . Macromolecules , 1988 . 21 ( 3 ): 846 - 851 . DOI:10.1021/ma00181a048http://doi.org/10.1021/ma00181a048.
N A Dotson , T Diekmann , C W Macosko , M Tirrell . . Macromolecules , 1992 . 25 ( 18 ): 4490 - 4500 . DOI:10.1021/ma00044a006http://doi.org/10.1021/ma00044a006.
N Ide , T Fukuda . . Macromolecules , 1997 . 30 ( 15 ): 4268 - 4271 . DOI:10.1021/ma9700946http://doi.org/10.1021/ma9700946.
N Ide , T Fukuda . . Macromolecules , 1999 . 32 ( 1 ): 95 - 99 . DOI:10.1021/ma9805349http://doi.org/10.1021/ma9805349.
H Gao , P Polanowski , K Matyjaszewski . . Macromolecules , 2009 . 42 ( 16 ): 5925 - 5932 . DOI:10.1021/ma901005dhttp://doi.org/10.1021/ma901005d.
K Min , H Gao , J A Yoon , W Wu , T Kowalewski , K Matyjaszewski . . Macromolecules , 2009 . 42 ( 5 ): 1597 - 1603 . DOI:10.1021/ma8026244http://doi.org/10.1021/ma8026244.
H Gao , W Li , K Matyjaszewski . . Macromolecules , 2008 . 41 2335 - 2340 . DOI:10.1021/ma702823bhttp://doi.org/10.1021/ma702823b.
W Wang , Y Zheng , E Roberts , C J Duxbury , L Ding , D J Irvine , S M Howdle . . Macromolecules , 2007 . 40 ( 20 ): 7184 - 7194 . DOI:10.1021/ma0707133http://doi.org/10.1021/ma0707133.
Y Zheng , H Cao , B Newland , Y Dong , A Pandit , W Wang . . J Am Chem Soc , 2011 . 133 ( 33 ): 13130 - 13137 . DOI:10.1021/ja2039425http://doi.org/10.1021/ja2039425.
B Newland , Y Zheng , Y Jin , M Abu-Rub , H Cao , W Wang , A Pandit . . J Am Chem Soc , 2012 . 134 ( 10 ): 4782 - 4789 . DOI:10.1021/ja2105575http://doi.org/10.1021/ja2105575.
Y Zheng , B Newland , H Tai , A Pandit , W Wang . . Chem Commun , 2012 . 48 ( 25 ): 3085 - 3087 . DOI:10.1039/c2cc17780chttp://doi.org/10.1039/c2cc17780c.
T Zhao , Y Zheng , J Poly , W Wang . . Nat Commun , 2013 . 4 1873 - 1878 . DOI:10.1038/ncomms2887http://doi.org/10.1038/ncomms2887.
A Einstein . . Ann Phys , 1906 . 19 371 - 381.
C Roberts , T Cosgrove , R G Schmidt , G V Gordon . . Macromolecules , 2001 . 34 ( 3 ): 538 - 543 . DOI:10.1021/ma001245zhttp://doi.org/10.1021/ma001245z.
M E Mackay , T T Dao , A Tuteja , D L Ho , H B Van , H C Kim , C J Hawker . . Nat Mater , 2003 . 2 ( 11 ): 762 - 766 . DOI:10.1038/nmat999http://doi.org/10.1038/nmat999.
Y Gao , T Zhao , W Wang . . RSC Adv , 2014 . 4 ( 106 ): 61687 - 61690 . DOI:10.1039/C4RA11477Ahttp://doi.org/10.1039/C4RA11477A.
Y Gao , T Zhao , D Zhou , U Greiser , W Wang . . Chem Commun , 2015 . 51 ( 77 ): 14435 - 14438 . DOI:10.1039/C5CC05189Dhttp://doi.org/10.1039/C5CC05189D.
Y Gao , D Zhou , T Zhao , X Wei , S McMahon , J O'Keeffe-Ahern , W Wang , U Greiser , B J Rodriguez , W Wang . . Macromolecules , 2015 . 48 ( 19 ): 6882 - 6889 . DOI:10.1021/acs.macromol.5b01549http://doi.org/10.1021/acs.macromol.5b01549.
W S Russel , D A Saville , W R Schowalter . Colloidal Dispersions , : Cambridge Cambridge University Press , 1989 . 78 - 81.
0
Views
11
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution