Chai Zhi-hua, Li Ang, An Ying-li, Shi Lin-qi. Functional Properties of PEG-b-PLys/C60/ZnTPPS Micelle. [J]. Acta Polymerica Sinica (2):393-398(2017)
DOI:
Chai Zhi-hua, Li Ang, An Ying-li, Shi Lin-qi. Functional Properties of PEG-b-PLys/C60/ZnTPPS Micelle. [J]. Acta Polymerica Sinica (2):393-398(2017) DOI: 10.11777/j.issn1000-3304.2017.16306.
Functional Properties of PEG-b-PLys/C60/ZnTPPS Micelle
Block copolymer micelles of poly (ethylene glycol)-block-poly (L-lysine) (PEG-
b
-PLys) was used to load fullerene (C
60
) and zinc tetrakis (4-sulfonatophenyl) porphyrin (ZnTPPS) in water. The diblock copolymer of PEG-
b
-PLys was firstly synthesized
via
ring-opening polymerization. Then the PEG-
b
-PLys/C
60
micelles were prepared by association between PEG-
b
-PLys and C
60
in aqueous solution. ZnTPPS was added to the PEG-
b
-PLys/C
60
micelle solution and PEG-
b
-PLys/C
60
/ZnTPPS complex micelles were finally obtained by electrostatic interaction between ZnTPPS and PLys. The structure and photochemical properties of the PEG-
b
-PLys/C
60
/ZnTPPS complex micelles were characterized by dynamic light scattering
transmission electron microscopy
UV-Visible spectroscopy and fluorescence spectroscopy. The results showed that the PEG-
b
-PLys/C
60
/ZnTPPS complex micelles were reasonably monodisperse with an average hydrodynamic diameter of 80 nm. The complex micelles showed the typical UV-Vis spectra of ZnTPPS and C
60
. The Soret-band peak of ZnTPPS in the complex micelles was red-shifted from 421 to 430 nm
which was possibly caused by electron transfer from the ZnTPPS to the fullerene. In addition
the fluorescence emission spectra of ZnTPPS was obviously quenched in the complex micelles. These results suggested that ZnTPPS was assembled successfully into PEG-
b
-PLys/C
60
micelles. In order to investigate the role of C
60
in the photoprotection of ZnTPPS
the illumination of ZnTPPS encapsulated in different micelles was carried out under identical conditions using a 360 nm cut-off filter. Compared with ZnTPPS in the PEG-
b
-PLys/ZnTPPS electrostatic micelles
the ZnTPPS loaded in the complex micelles possessed higher photostability because of the reduced generation of singlet oxygen. The photoreduction of methyl viologen hydrate (MV
2+
) was chosen as the model reaction to evaluate the electron-transfer efficiency of the complex micelles. The amount of MV
+·
produced by the complex micelles was higher than that by both free ZnTPPS and PEG-
b
-PLys/ZnTPPS electrostatic micelles. Thus the complex micelles showed better electron transfer ability and higher photoactivity because of the electron transfer from the porphyrin to the fullerene in the complex micelles.
H W Kroto , J R Heath , S C O'Brien , R F Curl , R E Smalley . . Nature , 1985 . 318 162 - 163 . DOI:10.1038/318162a0http://doi.org/10.1038/318162a0.
C Luo , D M Guldi , H Imahori , K Tamaki , Y Sakata . . J Am Chem Soc , 2000 . 122 6535 - 6551 . DOI:10.1021/ja993959zhttp://doi.org/10.1021/ja993959z.
A Graja , I Olejniczak , A Bogucki , D Bonifazi , F Diederich . . Chem Phys , 2004 . 300 227 - 232 . DOI:10.1016/j.chemphys.2004.02.005http://doi.org/10.1016/j.chemphys.2004.02.005.
S Hayashi , M Tanaka , H Hayashi , S Eu , T Umeyama , Y Matano , Y Araki , H Imahori . . J Phy Chem C , 2008 . 112 15576 - 15585.
D Gust , T A Moore , A L Moore . . J Photoch Photobio B , 2000 . 58 63 - 71 . DOI:10.1016/S1011-1344(00)00145-7http://doi.org/10.1016/S1011-1344(00)00145-7.
G Kodis , P A Liddell , A L Moore , D Gust . . J Phys Org Chem , 2004 . 17 724 - 734 . DOI:10.1002/(ISSN)1099-1395http://doi.org/10.1002/(ISSN)1099-1395.
V Garg , G Kodis , M Chachisvilis , M Hambourger , A L Moore , T A Moore , D Gust . . J Am Chem Soc , 2011 . 133 2944 - 2954 . DOI:10.1021/ja1083078http://doi.org/10.1021/ja1083078.
F D'Souza , G M Venukadasula , K I Yamanaka , N K Subbaiyan , M E Zandler , O Ito . . Org Biomol Chem , 2009 . 7 1076 - 1080 . DOI:10.1039/b822362ahttp://doi.org/10.1039/b822362a.
L Moreira , J Calbo , B M Illescas , J Aragó , I Nierengarten , B D Nicot , E Ortí , N Martín , J F Nierengarten . . Angew Chem Int Ed , 2015 . 54 1255 - 1260 . DOI:10.1002/anie.201409487http://doi.org/10.1002/anie.201409487.
Y Xiang , X W Wei , X M Zhang , H L Wang , X L Wei , J P Hu , G Yin , Z Xu . . Inorg Chem Commun , 2006 . 9 452 - 455 . DOI:10.1016/j.inoche.2006.02.011http://doi.org/10.1016/j.inoche.2006.02.011.
X X Ke , J W Xu , B Y Du , Z Q Fan . . Chinese J Polym Sci , 2015 . 33 1038 - 1047 . DOI:10.1007/s10118-015-1656-5http://doi.org/10.1007/s10118-015-1656-5.
H J Li , Z Yu , S P Wang , L M Zhang , L Q Yang . . Chinese J Polym Sci , 2014 . 32 1413 - 1418 . DOI:10.1007/s10118-014-1517-7http://doi.org/10.1007/s10118-014-1517-7.
Z H Chai , H J Gao , J Ren , Y L An , L Q Shi . . RSC Adv , 2013 . 3 18351 - 18358 . DOI:10.1039/c3ra42616ehttp://doi.org/10.1039/c3ra42616e.
Z H Chai , C Jing , Y Liu , Y L An , L Q Shi . . Colloid Polym Sci , 2014 . 292 1329 - 1337 . DOI:10.1007/s00396-014-3186-zhttp://doi.org/10.1007/s00396-014-3186-z.
G Mountrichas , S Pispas , E Xenogiannopoulou , P Aloukos , S Couris . . J Phys Chem B , 2007 . 111 4315 - 4319 . DOI:10.1021/jp068796xhttp://doi.org/10.1021/jp068796x.
A Harada , K Kataoka . . Macromolecules , 1995 . 28 5294 - 5299 . DOI:10.1021/ma00119a019http://doi.org/10.1021/ma00119a019.
Y Saiki , Y Amao . . Biotechnol Bioeng , 2003 . 82 710 - 714 . DOI:10.1002/bit.10622http://doi.org/10.1002/bit.10622.
T Watanabe , K Honda . . J Phys Chem , 1982 . 86 2617 - 2619 . DOI:10.1021/j100211a014http://doi.org/10.1021/j100211a014.
A Laiho , R H A Ras , S Valkama , J Ruokolainen , R Osterbacka , O Ikkala . . Macromolecules , 2006 . 39 7648 - 7653 . DOI:10.1021/ma061165ghttp://doi.org/10.1021/ma061165g.
S Deguchi , R G Alargova , K Tsujii . . Langmuir , 2001 . 17 6013 - 6017 . DOI:10.1021/la010651ohttp://doi.org/10.1021/la010651o.
Y Amao , Y Tomonou , I Okura . . Sol Energy Mat Sol C , 2003 . 79 103 - 111 . DOI:10.1016/S0927-0248(02)00373-2http://doi.org/10.1016/S0927-0248(02)00373-2.