浏览全部资源
扫码关注微信
上海交通大学化学化工学院 金属基复合材料国家重点实验室 上海 200240
Published:20 February 2017,
Received:8 October 2016,
Revised:7 November 2016,
扫 描 看 全 文
Huang Yu, Wang Si-teng, Zhu Xin-yuan. Recent Advances of Biodegradable Hyperbranched Polymers. [J]. Acta Polymerica Sinica (2):245-258(2017)
Huang Yu, Wang Si-teng, Zhu Xin-yuan. Recent Advances of Biodegradable Hyperbranched Polymers. [J]. Acta Polymerica Sinica (2):245-258(2017) DOI: 10.11777/j.issn1000-3304.2017.16309.
近年来,随着聚合物材料和生物医药交叉领域的发展,生物可降解聚合物得到了广泛关注.其中,生物可降解超支化聚合物具有独特的三维拓扑结构、大的内部空腔、众多的活性末端基团以及良好生物相容性和可降解性等特点,在生物医学领域包括药物/造影剂输送、基因转染、蛋白质纯化/检测/输送、抗菌、组织工程等领域都展现出很大的应用前景.本文主要从水解、酶解和刺激降解的降解机理出发,详细综述了近年来生物可降解超支化聚合物的研究进展,并简单介绍了它们在疾病治疗中的应用.
Hyperbranched polymers (HBPs) are highly branched macromolecules with a three-dimensional dendritic architecture. They have four important characteristics:(1) their three-dimensional dendritic architecture can prevent entanglement among polymer chains
thereby resulting in completely different properties from linear polymers; (2) their adequate spatial cavities are beneficial to encapsulate guest molecules; (3) their good solubility and low viscosity can improve processability in comparison with linear polymers; (4) there is a large population of terminal functional groups in HBPs that are easy to for chemical modification. Due to these unique topological structures and distinct physical/chemical properties
HBPs and their assemblies have exhibited great potential in various biomedical areas including drug/contrast agent delivery
gene transfection
protein purification/detection/delivery
antibacterial materials and tissue engineering. The advances of HBPs in biomedical applications have led to an accelerated discovery of HBPs with biodegradable backbones. In recent years
the biodegradable HBPs with excellent biocompatibility
defined structure
and controlled degradation profiles have become increasingly important in therapeutic applications owing to their low toxicity
non-immunogenicity as well as general ease of degradation and metabolization. Up to now
a large number of biodegradable HBPs have been well designed and widely used in therapeutic applications
such as hyperbranched polyester
hyperbranched polyphosphate
hyperbranched polysaccharide
and hyperbranched polypeptide. On the other hand
in order to further study the biodegradable HBPs
a detailed summary and comprehensive understanding on the biodegradable mechanisms of HBPs might be helpful. Considering the differences of degradation reactions
we grouped the biodegradable mechanisms into three types:hydrolysis
enzymolysis and stimuli-responsive degradation. To date
although many elegant reviews on HBPs have been published
a systematic review on the biodegradable HBPs focused on the degradation mechanisms has not been reported so far. Herein
the recent advances of biodegradable HBPs are highlighted. In particular
the biodegradable mechanisms of HBPs
including hydrolysis
enzymolysis and stimuli-responsive degradation
are emphasized. Finally
the applications in disease treatment and possible future directions in this emerging area are also briefly discussed.
生物可降解降解机理超支化聚合物疾病治疗
BiodegradationBiodegradable mechanismHyperbranched polymerDisease treatment
D A Tomalia , J M J Fréchet . . J Polym Sci, Part A:Polym Chem , 2002 . 40 2719 - 728 . DOI:10.1002/pola.10301http://doi.org/10.1002/pola.10301.
C Carlmark , C Hawker , A Hult , M Malkoch . . Chem Soc Rev , 2009 . 38 352 - 362 . DOI:10.1039/B711745Khttp://doi.org/10.1039/B711745K.
B I Voit , A Lederer . . Chem Rev , 2009 . 109 5924 - 5973 . DOI:10.1021/cr900068qhttp://doi.org/10.1021/cr900068q.
P K Valonen , F T Moutos , A Kusanagi , M G Moretti , B O Diekman , J F Welter , A I Caplan , F Guilak , L E Freed . . Biomaterials , 2010 . 31 2193 - 2200 . DOI:10.1016/j.biomaterials.2009.11.092http://doi.org/10.1016/j.biomaterials.2009.11.092.
C Ji , N Annabi , M Hosseinkhani , S Sivaloganahan , F Dehghani . . Acta Biomaterialia , 2012 . 8 570 - 578 . DOI:10.1016/j.actbio.2011.09.028http://doi.org/10.1016/j.actbio.2011.09.028.
J Ge , Y Wang , S Min . . J Biomed Eng , 2010 . 27 1070 - 1075.
C Gao , D Y Yan . . Prog Polym Sci , 2004 . 29 183 - 275 . DOI:10.1016/j.progpolymsci.2003.12.002http://doi.org/10.1016/j.progpolymsci.2003.12.002.
S Peleshanko , V V Tsukruk . . Prog Polym Sci , 2008 . 33 523 - 580 . DOI:10.1016/j.progpolymsci.2008.01.003http://doi.org/10.1016/j.progpolymsci.2008.01.003.
J Nicolas , S Mura , D Brambilla , N Mackiewicz , P Couvreur . . Chem Soc Rev , 2013 . 42 1147 - 1235 . DOI:10.1039/C2CS35265Fhttp://doi.org/10.1039/C2CS35265F.
X Y Zhu , Y F Zhou , D Y Yan . . J Polym Sci, Part B:Polym Phys , 2011 . 49 1277 - 1286 . DOI:10.1002/polb.22320http://doi.org/10.1002/polb.22320.
R J Dong , Y F Zhou , X Y Zhu . . Acc Chem Res , 2014 . 47 2006 - 2016 . DOI:10.1021/ar500057ehttp://doi.org/10.1021/ar500057e.
J Khandare , M Calderon , N M Dagia , R Haag . . Chem Soc Rev , 2012 . 41 2824 - 2848 . DOI:10.1039/C1CS15242Dhttp://doi.org/10.1039/C1CS15242D.
M Irfan , M Seiler . . Ind Eng Chem Res , 2010 . 49 1169 - 1196 . DOI:10.1021/ie900216rhttp://doi.org/10.1021/ie900216r.
C M Paleos , D Tsiourvas , Z Sideratou , L A Tziveleka . . Expert Opin Drug Delivery , 2010 . 7 1387 - 1398 . DOI:10.1517/17425247.2010.534981http://doi.org/10.1517/17425247.2010.534981.
D L Wang , T Y Zhao , X Y Zhu , D Y Yan , W X Wang . . Chem Soc Rev , 2015 . 44 4023 - 4071 . DOI:10.1039/C4CS00229Fhttp://doi.org/10.1039/C4CS00229F.
Y Huang , D L Wang , X Y Zhu , D Y Yan , R J Chen . . Polym Chem , 2015 . 6 2794 - 2812 . DOI:10.1039/C5PY00144Ghttp://doi.org/10.1039/C5PY00144G.
Q Zhu , F Qiu , B S Zhu , X Y Zhu . . RSC Adv , 2013 . 3 2071 - 2083 . DOI:10.1039/C2RA22210Hhttp://doi.org/10.1039/C2RA22210H.
Q B Mou , Y Ma , X Jin , X Y Zhu . . Mol Syst Des Eng , 2016 . 1 25 - 39 . DOI:10.1039/C5ME00015Ghttp://doi.org/10.1039/C5ME00015G.
F Qiu , Y Huang , X Y Zhu . . Macromol Chem Phys , 2016 . 217 266 - 283 . DOI:10.1002/macp.201500283http://doi.org/10.1002/macp.201500283.
H B Jin , W Huang , X Y Zhu , Y F Zhou , D Y Yan . . Chem Soc Rev , 2012 . 41 5986 - 5997 . DOI:10.1039/c2cs35130ghttp://doi.org/10.1039/c2cs35130g.
Y F Zhou , D Y Yan . . Chem Commun , 2009 . 1172 - 1188.
Y F Zhou , W Huang , J Y Liu , X Y Zhu , D Y Yan . . Adv Mater , 2010 . 22 4567 - 4590 . DOI:10.1002/adma.201000369http://doi.org/10.1002/adma.201000369.
Y Ma , Q B Mou , D L Wang , X Y Zhu , D Y Yan . . Theranostics , 2016 . 6 930 - 947 . DOI:10.7150/thno.14855http://doi.org/10.7150/thno.14855.
M Hu , M S Chen , G L Li , Y Pang , D L Wang , J L Wu , F Qiu , X Y Zhu , J Sun . . Biomacromolecules , 2012 . 13 3552 - 3561 . DOI:10.1021/bm300966dhttp://doi.org/10.1021/bm300966d.
C Gao , W Tang , D Y Yan . . J Polym Sci, Part A:Polym Chem , 2002 . 40 2340 - 2349 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
D Lin , B Liu , L Xu , K L Budzinski , C Q Shou . . J Appl Polym Sci , 2011 . 121 957 - 963 . DOI:10.1002/app.33678http://doi.org/10.1002/app.33678.
H Ihre , A Hult , E Soderlind . . J Am Chem Soc , 1996 . 118 6388 - 6395 . DOI:10.1021/ja954171thttp://doi.org/10.1021/ja954171t.
Y Pang , J Y Liu , Y Su , B S Zhu , W Huang , Y F Zhou , X Y Zhu , D Y Yan . . Sci China, Ser B , 2010 . 53 2497 - 2508 . DOI:10.1007/s11426-010-4163-0http://doi.org/10.1007/s11426-010-4163-0.
C L Tu , L J Zhu , F Qiu , D L Wang , Y Su , X Y Zhu , D Y Yan . . Polymer , 2013 . 54 2020 - 2027 . DOI:10.1016/j.polymer.2012.12.029http://doi.org/10.1016/j.polymer.2012.12.029.
H Y Chen , G L Li , H R Chi , D L Wang , C L Tu , L J Pan , L J Zhu , F Qiu , F L Guo , X Y Zhu . . Bioconjugate Chem , 2012 . 23 1915 - 1924 . DOI:10.1021/bc3003088http://doi.org/10.1021/bc3003088.
D L Wang , H Y Chen , Y Su , F Qiu , L J Zhu , X Y Huan , B S Zhu , D Y Yan , F L Guo , X Y Zhu . . Polym Chem , 2013 . 4 85 - 94 . DOI:10.1039/C2PY20573Dhttp://doi.org/10.1039/C2PY20573D.
M Liu , N Vladimirov , J M J Fréche . . Macromolecules , 1999 . 32 6881 - 6884 . DOI:10.1021/ma990785xhttp://doi.org/10.1021/ma990785x.
M Okazaki , M Murota , Y Kawaguchi , N Tsubokawa . . J Appl Polym Sci , 2001 . 80 573 - 579 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
J Y Liu , W Huang , Y F Zhou , D Y Yan . . Macromolecules , 2009 . 42 4394 - 4399 . DOI:10.1021/ma900798hhttp://doi.org/10.1021/ma900798h.
J Y Liu , W Huang , Y Pang , D Y Yan . . Chem Soc Rev , 2015 . 44 3942 - 3953 . DOI:10.1039/C5CS00318Khttp://doi.org/10.1039/C5CS00318K.
J Y Liu , Y Pang , W Huang , X Zhai , X Y Zhu , Y F Zhou , D Y Yan . . Macromolecules , 2010 . 43 8416 - 8423 . DOI:10.1021/ma1015819http://doi.org/10.1021/ma1015819.
J Y Liu , Y Pang , W Huang , X Y Zhu , Y F Zhou , D Y Yan . . Biomaterials , 2010 . 31 1334 - 1341 . DOI:10.1016/j.biomaterials.2009.10.021http://doi.org/10.1016/j.biomaterials.2009.10.021.
S J Singer , G L Nicolson . . Science , 1972 . 175 720 - 731 . DOI:10.1126/science.175.4023.720http://doi.org/10.1126/science.175.4023.720.
K Sou , B Goins , S Takeoka , E Tsuchida , W T Phillips . . Biomaterials , 2007 . 28 2655 - 2666 . DOI:10.1016/j.biomaterials.2007.01.041http://doi.org/10.1016/j.biomaterials.2007.01.041.
T Nakaya , Y J Li . . Prog Polym Sci , 1999 . 24 143 - 181 . DOI:10.1016/S0079-6700(98)00015-Xhttp://doi.org/10.1016/S0079-6700(98)00015-X.
Q Ye , J Asherman , M Stevenson , E Brownson , N V Katre . . J Controlled Release , 2000 . 64 155 - 166 . DOI:10.1016/S0168-3659(99)00146-7http://doi.org/10.1016/S0168-3659(99)00146-7.
K Ishihara , R Tsujino , M Hamada , N Toyoda , Y Iwasaki . . Colloids Surf B , 2002 . 25 325 - 333 . DOI:10.1016/S0927-7765(02)00006-1http://doi.org/10.1016/S0927-7765(02)00006-1.
J Y Liu , Y Pang , W Huang , X Y Zhu , Y F Zhou , D Y Yan . . Biomaterials , 2010 . 31 1334 - 1341 . DOI:10.1016/j.biomaterials.2009.10.021http://doi.org/10.1016/j.biomaterials.2009.10.021.
T Satoh . . Soft Matter , 2009 . 5 1972 - 1982 . DOI:10.1039/b819748bhttp://doi.org/10.1039/b819748b.
J Kadokawa , S Kasai , Y Watanabe , M Karasu , H Tagaya , K Chiba . . Macromolecules , 1997 . 30 8212 - 8217 . DOI:10.1021/ma971117jhttp://doi.org/10.1021/ma971117j.
J Kadokawa , M Sato , M Karasu , H Tagaya , K Chiba . . Angew Chem Int Ed , 1998 . 37 2373 - 2376 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
Z Kadlecova , L Baldi , D Hacker , F M Wurm , H A Klok . . Biomacromolecules , 2012 . 13 3127 - 3137 . DOI:10.1021/bm300930jhttp://doi.org/10.1021/bm300930j.
M Scholl , T Q Nguyen , B Bruchmann , H A Klok . . J Polym Sci, Part A:Polym Chem , 2007 . 45 5494 - 5508 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
L S Nair , C T Laurencin . . Prog Polym Sci , 2007 . 32 762 - 798 . DOI:10.1016/j.progpolymsci.2007.05.017http://doi.org/10.1016/j.progpolymsci.2007.05.017.
S Li . . J Biomed Mater Res , 1999 . 48 342 - 353 . DOI:10.1002/(ISSN)1097-4636http://doi.org/10.1002/(ISSN)1097-4636.
Z F Jia , G L Li , Q Zhu , D Y Yan , X Y Zhu , H Chen , J L Wu , C L Tu , J Sun . . Chem Eur J , 2009 . 15 7593 - 7600 . DOI:10.1002/chem.v15:31http://doi.org/10.1002/chem.v15:31.
Y Pang , Q Zhu , J Y Liu , J L Wu , R B Wang , S Y Chen , X Y Zhu , D Y Yan , W Huang , B S Zhu . . Biomacromolecules , 2010 . 11 575 - 582 . DOI:10.1021/bm100007shttp://doi.org/10.1021/bm100007s.
Y Pang , J Y Liu , J L Wu , G L Li , R B Wang , Y Su , P He , X Y Zhu , D Y Yan , B S Zhu . . Bioconjugate Chem , 2010 . 21 2093 - 2102 . DOI:10.1021/bc100325ahttp://doi.org/10.1021/bc100325a.
G L Li , J Y Liu , Y Pang , R B Wang , L M Mao , D Y Yan , X Y Zhu , J Sun . . Biomacromolecules , 2011 . 12 2016 - 2026 . DOI:10.1021/bm200372shttp://doi.org/10.1021/bm200372s.
Y Pang , J Y Liu , Y Su , J L Wu , L J Zhu , X Y Zhu , D Y Yan , B S Zhu . . Polym Chem , 2011 . 2 1661 - 1670 . DOI:10.1039/c1py00053ehttp://doi.org/10.1039/c1py00053e.
Y Pang , Q Zhu , D L Zhou , J Y Liu , Y Chen , Y Su , D Y Yan , X Y Zhu , B S Zhu . . J Polym Sci, Part A:Polym Chem , 2011 . 49 966 - 975.
Y H Liu , N Yan , F Li , P Chen . . Polym Int , 2013 . 62 390 - 396.
Y Chen , L Z Zhou , Y Pang , W Huang , F Qiu , X L Jiang , X Y Zhu , D Y Yan , Q Chen . . Bioconjugate Chem , 2011 . 22 1162 - 1170 . DOI:10.1021/bc200010whttp://doi.org/10.1021/bc200010w.
M S Chen , J L Wu , L Z Zhou , C Y Jin , C L Tu , B S Zhu , F Wu , Q Zhu , X Y Zhu , D Y Yan . . Polym Chem , 2011 . 2 2674 - 2682 . DOI:10.1039/c1py00333jhttp://doi.org/10.1039/c1py00333j.
R R Mallepally , I Smirnova , W Arlt , M Seiler , S K Klee-Laquai , G Hills . . J Appl Polym Sci , 2009 . 112 1873 - 1881 . DOI:10.1002/app.v112:4http://doi.org/10.1002/app.v112:4.
L L Meng , W Huang , D L Wang , X H Huang , X Y Zhu , D Y Yan . . Biomacromolecules , 2013 . 14 2601 - 2610 . DOI:10.1021/bm400451vhttp://doi.org/10.1021/bm400451v.
Y Jin , L Song , Y Su , L J Zhu , Y Pang , F Qiu , G S Tong , D Y Yan , B S Zhu , X Y Zhu . . Biomacromolecules , 2011 . 12 3460 - 3468 . DOI:10.1021/bm200956uhttp://doi.org/10.1021/bm200956u.
L J Zhu , Y F Shi , C L Tu , R B Wang , Y Pang , F Qiu , X Y Zhu , D Y Yan , L He , C Y Jin , B S Zhu . . Langmuir , 2010 . 26 8875 - 8881 . DOI:10.1021/la9046275http://doi.org/10.1021/la9046275.
Y Huang , R J Dong , D Y Yan , X Y Zhu . . Soft Matter , 2014 . 10 6121 - 6138 . DOI:10.1039/C4SM00871Ehttp://doi.org/10.1039/C4SM00871E.
L Song , C L Tu , Y F Shi , F Qiu , L He , Y Jiang , Q Zhu , B S Zhu , D Y Yan , X Y Zhu . . Macromol Rapid Commun , 2010 . 31 443 - 448.
Y M Xia , Y P Wang , Y M Wang , C L Tu , F Qiu , L J Zhu , Y Su , D Y Yan , B S Zhu , X Y Zhu . . Colloids Surf B , 2011 . 88 674 - 681 . DOI:10.1016/j.colsurfb.2011.07.059http://doi.org/10.1016/j.colsurfb.2011.07.059.
G R Martin , R K Jain . . Cancer Res , 1994 . 54 5670 - 5674.
K Engin , D B Leeper , J R Cater , A J Thistlethwaite , L Tupchong , J D Mcfarlane . . Int J Hyperther , 1995 . 11 211 - 216 . DOI:10.3109/02656739509022457http://doi.org/10.3109/02656739509022457.
R Van Sluis , Z M Bhujwalla , N Raghunand , P Ballesteros , J Alvarez , S Cerdan , J P Galons , R J Gillies . . Magnet Reson Med , 1999 . 41 743 - 750 . DOI:10.1002/(ISSN)1522-2594http://doi.org/10.1002/(ISSN)1522-2594.
E Y Yan , Y Ding , C J Chen , R T Li , Y Hu , X Q Jiang . . Chem Commun , 2009 . 19 2718 - 2720.
H T McMahon , E Boucrot . . Nat Rev Mol Cell Biol , 2011 . 12 517 - 533 . DOI:10.1038/nrm3151http://doi.org/10.1038/nrm3151.
L J Zhu , C L Tu , B S Zhu , Y Su , Y Pang , D Y Yan , J L Wu , X Y Zhu . . Polym Chem , 2011 . 2 1761 - 1768 . DOI:10.1039/c1py00161bhttp://doi.org/10.1039/c1py00161b.
R A Shenoi , J K Narayanannair , J L Hamilton , B F Lai , S Horte , R K Kainthan , J P Varghese , K G Rajeev , M Manoharan , J N Kizhakkedathu . . J Am Chem Soc , 2012 . 134 14945 - 14957 . DOI:10.1021/ja305080fhttp://doi.org/10.1021/ja305080f.
J Nordberg , E S Arner . . Free Radic Biol Med , 2001 . 31 1287 - 1312 . DOI:10.1016/S0891-5849(01)00724-9http://doi.org/10.1016/S0891-5849(01)00724-9.
G Powis , D Mustacich , A Coon . . Free Radical Bio Med , 2000 . 29 312 - 322 . DOI:10.1016/S0891-5849(00)00313-0http://doi.org/10.1016/S0891-5849(00)00313-0.
T Finkel , M Serrano , M A Blasco . . Nature , 2007 . 448 767 - 774 . DOI:10.1038/nature05985http://doi.org/10.1038/nature05985.
F Antunes , E Cadenas . . Free Radical Biol Med , 2001 . 30 1008 - 1018 . DOI:10.1016/S0891-5849(01)00493-2http://doi.org/10.1016/S0891-5849(01)00493-2.
S V Lennon , S J Martin , T G Cotter . . Cell Proliferation , 1991 . 24 203 - 214 . DOI:10.1111/j.1365-2184.1991.tb01150.xhttp://doi.org/10.1111/j.1365-2184.1991.tb01150.x.
X Wei , R J Dong , D L Wang , T Y Zhao , Y S Gao , P Duffy , X Y Zhu , W X Wang . . Chem Eur J , 2015 . 21 11427 - 11434 . DOI:10.1002/chem.201501317http://doi.org/10.1002/chem.201501317.
J Y Liu , Y Pang , J Chen , P Huang , W Huang , X Y Zhu , D Y Yan . . Biomaterials , 2012 . 33 7765 - 7774 . DOI:10.1016/j.biomaterials.2012.07.003http://doi.org/10.1016/j.biomaterials.2012.07.003.
A Pompella , A Visvikisa , A Paolicchib , V D Tatab , A F Casinib . . Biochem Pharmacol , 2003 . 66 1499 - 1503 . DOI:10.1016/S0006-2952(03)00504-5http://doi.org/10.1016/S0006-2952(03)00504-5.
G Saitoa , J A Swansonb , K D Lee . . Adv Drug Deliv Rev , 2003 . 55 199 - 215 . DOI:10.1016/S0169-409X(02)00179-5http://doi.org/10.1016/S0169-409X(02)00179-5.
Y Y Zhuang , Q Zhu , C L Tu , D L Wang , J L Wu , Y M Xia , G S Tong , L He , B S Zhu , D Y Yan , X Y Zhu . . J Mater Chem , 2012 . 22 23852 - 23860 . DOI:10.1039/c2jm34306ahttp://doi.org/10.1039/c2jm34306a.
Y Y Zhuang , Y Su , Y Peng , H P Deng , X D Xi , X Y Zhu , Y F Lu . . Biomacromolecules , 2014 . 15 1408 - 1418 . DOI:10.1021/bm500018shttp://doi.org/10.1021/bm500018s.
J Y Liu , Y Pang , W Huang , Z Y Zhu , X Y Zhu , Y F Zhou , D Y Yan . . Biomacromolecules , 2011 . 12 2407 - 2415 . DOI:10.1021/bm2005164http://doi.org/10.1021/bm2005164.
X C Zheng , X Wang , H Mao , W Wu , B R Liu , X Q Jiang . . Nat Commun , 2015 . 6 5834 - 5834 . DOI:10.1038/ncomms6834http://doi.org/10.1038/ncomms6834.
L Cui , Y Zhong , W P Zhu , Y F Xu , Q S Du , X Wang , X H Qian , Y Xiao . . Org Lett , 2011 . 13 928 - 931 . DOI:10.1021/ol102975thttp://doi.org/10.1021/ol102975t.
K Okuda , Y Okabe , T Kadonosono , T Ueno , B G M Youssif , S Kizaka-Kondoh , H Nagasawa . . Bioconjugate Chem , 2012 . 23 324 - 329 . DOI:10.1021/bc2004704http://doi.org/10.1021/bc2004704.
M W Gorman , E O Feigl , C W Buffington . . Clin Chem , 2007 . 53 318 - 325.
F M Gribble , G Loussouarn , S J Tucker , C Zhao , C G Nichols , F M Ashcroft . . J Biol Chem , 2000 . 275 30046 - 30049 . DOI:10.1074/jbc.M001010200http://doi.org/10.1074/jbc.M001010200.
M Leist , B Single , A F Castoldi , S Kühnle , P Nicotera . . J Exp Med , 1997 . 185 1481 - 1486 . DOI:10.1084/jem.185.8.1481http://doi.org/10.1084/jem.185.8.1481.
S Y Chen , Z H Tan , N Li , R B Wang , L He , Y F Shi , L Jiang , P Y Li , X Y Zhu . . Macromol Biosci , 2011 . 11 828 - 838 . DOI:10.1002/mabi.201000473http://doi.org/10.1002/mabi.201000473.
Q Wang , L J Zhu , G L Li , C L Tu , Y Pang , C Y Jin , B S Zhu , X Y Zhu , Y Q Liu . . Macromol Biosci , 2011 . 11 1553 - 1562.
C L Tu , L J Zhu , P P Li , Y Chen , Y Su , D Y Yan , X Y Zhu , G Y Zhou . . Chem Commun , 2011 . 47 6063 - 6065 . DOI:10.1039/c0cc05662fhttp://doi.org/10.1039/c0cc05662f.
S R Yu , R J Dong , J J Chen , F Chen , W Jiang , Y F Zhou , X Y Zhu , D Y Yan . . Biomacromolecules , 2014 . 15 1828 - 1836 . DOI:10.1021/bm5002203http://doi.org/10.1021/bm5002203.
K Saatchi , P Soema , N Gelder , R Misri , K McPhee , J H Baker , S A Reinsberg , D E Brooks , U O Häfeli . . Bioconjugate Chem , 2012 . 23 372 - 381 . DOI:10.1021/bc200280ghttp://doi.org/10.1021/bc200280g.
R K Kainthan , C Mugabe , H M Burt , D E Brooks . . Biomacromolecules , 2008 . 9 886 - 895 . DOI:10.1021/bm701208phttp://doi.org/10.1021/bm701208p.
Y Y Zhou , Z Guo , Y W Zhang , W Huang , Y F Zhou , D Y Yan . . Macromol Biosci , 2009 . 9 1090 - 1096 . DOI:10.1002/mabi.v9:11http://doi.org/10.1002/mabi.v9:11.
J Zou , W Shi , J Wang , J Bo . . Macromol Biosci , 2005 . 5 662 - 668 . DOI:10.1002/(ISSN)1616-5195http://doi.org/10.1002/(ISSN)1616-5195.
S Aryal , M Prabaharan , S Pilla , S Gong . . Int J Biol Macromol , 2009 . 44 346 - 352 . DOI:10.1016/j.ijbiomac.2009.01.007http://doi.org/10.1016/j.ijbiomac.2009.01.007.
H Y Hong , Y Y Mai , Y F Zhou , D Y Yan , Y Chen . . J Polym Sci, Part A:Polym Chem , 2008 . 46 668 - 681.
X Y Sun , Y F Zhou , D Y Yan . . Sci China Ser B:Chem , 2009 . 52 1703 - 1710 . DOI:10.1007/s11426-009-0227-4http://doi.org/10.1007/s11426-009-0227-4.
S Chen , X Z Zhang , S X Cheng , R X Zhuo , Z W Gu . . Biomacromolecules , 2008 . 9 2578 - 2585 . DOI:10.1021/bm800371nhttp://doi.org/10.1021/bm800371n.
M Prabaharan , J J Grailer , S Pilla , D A Steeber , S Gong . . Biomaterials , 2009 . 30 5757 - 5766 . DOI:10.1016/j.biomaterials.2009.07.020http://doi.org/10.1016/j.biomaterials.2009.07.020.
X Gao , X Zhang , X Z Wu , X Zhang , Z Wang , C Li . . J Controlled Release , 2009 . 140 141 - 147 . DOI:10.1016/j.jconrel.2009.08.003http://doi.org/10.1016/j.jconrel.2009.08.003.
R J Dong , L Z Zhou , J L Wu , C L Tu , Y Su , B S Zhu , H C Gu , D Y Yan , X Y Zhu . . Chem Commun , 2011 . 47 5473 - 5475 . DOI:10.1039/c1cc10934khttp://doi.org/10.1039/c1cc10934k.
R B Wang , L Z Zhou , Y F Zhou , G L Li , X Y Zhu , H C Gu , X L Jiang , H Q Li , J L Wu , L He , X Q Guo , B S Zhu , D Y Yan . . Biomacromolecules , 2010 . 11 489 - 495 . DOI:10.1021/bm901215shttp://doi.org/10.1021/bm901215s.
N Li , Y Jin , L Z Xue , P Y Li , D Y Yan , X Y Zhu . . Chinese J Polym Sci , 2013 . 31 530 - 540 . DOI:10.1007/s10118-013-1242-7http://doi.org/10.1007/s10118-013-1242-7.
R B Wang , W Z Yuan , X Y Zhu . . Chinese J Polym Sci , 2015 . 33 680 - 687 . DOI:10.1007/s10118-015-1635-xhttp://doi.org/10.1007/s10118-015-1635-x.
J Wang , Y Yao , B Ji , W Huang , Y F Zhou , D Y Yan . . Chinese J Polym Sci , 2011 . 29 241 - 250 . DOI:10.1007/s10118-011-1030-1http://doi.org/10.1007/s10118-011-1030-1.
W Saiyin , D L Wang , L Li , L J Zhu , B Liu , L Sheng , Y Li , B S Zhu , L M Mao , G L Li , X Y Zhu . . Mol Pharmaceutics , 2014 . 11 166 - 1675.
C Kontoyianni , Z Sideratou , T Theodossiou , L A Tziveleka , D Tsiourvas , C M Paleos . . Macromol Biosci , 2008 . 8 871 - 881 . DOI:10.1002/mabi.v8:9http://doi.org/10.1002/mabi.v8:9.
Y L Xiao , H Hong , A Javadi , J W Engle , W J Xu , Y A Yang , Y Zhang , T E Barnhart , W B Cai , S Q Gong . . Biomaterials , 2012 . 33 3071 - 3082 . DOI:10.1016/j.biomaterials.2011.12.030http://doi.org/10.1016/j.biomaterials.2011.12.030.
0
Views
42
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution