浏览全部资源
扫码关注微信
上海大学纳米科学与技术研究中心 上海 200444
Published:20 June 2017,
Received:6 November 2016,
Revised:25 November 2016,
扫 描 看 全 文
Bin Weng, Dan Shang, Lu-jiang Jin, Xiao-ying Sun, Jian-zhong Hang. Preparation and Performance of Silicone-based Amphiphilic Antifouling Coating with Fluorine and PEG Moieties. [J]. Acta Polymerica Sinica (6):990-998(2017)
Bin Weng, Dan Shang, Lu-jiang Jin, Xiao-ying Sun, Jian-zhong Hang. Preparation and Performance of Silicone-based Amphiphilic Antifouling Coating with Fluorine and PEG Moieties. [J]. Acta Polymerica Sinica (6):990-998(2017) DOI: 10.11777/j.issn1000-3304.2017.16330.
以不同分子量的端氢硅油(PDMS)和聚乙二醇二烯丙基醚(PEGDE)为原料,通过硅氢加成合成了系列双键封端的含有机硅和聚乙二醇(PEG)链段的多嵌段共聚物(PDMS-
b
-PEG)
m
,再用三甲氧基氢硅烷进行端基官能化,生成三甲氧基硅烷封端的多嵌段聚合物,即含PEG前驱物.含PEG前驱物、含氟前驱物(FMS-9922)与有机硅基体树脂通过缩合聚合制备了含PEG的氟硅双亲弹性防污涂层.通过核磁共振氢谱、红外光谱对PEG前驱物的结构进行了表征.吸水率、SEM-EDS和接触角测试考察了含PEG前驱物中疏水链段的长度,含氟前驱物的含量对涂层表面重排的影响,结果表明PEG前驱物中疏水链段越长,涂层的吸水率越低,在水中越稳定,且表面不易发生重排.而含氟前驱物的加入能促使PEG链段向表面方向迁移.抗蛋白、抗菌和抗藻附着性能测试表明:含有FMS-9922的样品防污性能均优于不含FMS-9922的样品,而且随着FMS-9922用量增加,涂层防污性能呈上升趋势;但是FMS-9922用量太高时,体系相容性下降,防污性能也随之变差,故FMS-9922的含量控制在7%为宜.
Aseries of multi-block copolymers(PDMS-
b
-PEG)
m
were synthesized byhydrosilylation starting from polyethylene glycol diallyl ether (PEG) and hydride terminated polydimethylsioxane (PDMS)with different molecular weights.Trimethoxysilane terminated PEG precursors were synthesized based on the multi-block copolymers(PDMS-
b
-PEG)
m
and trimethoxysilane.Furthermore
PEG precursors were mixed with fluorine-containing precursors (FMS-9922) and silicone resin to prepare PEG-containing fluorosilicone elastomeric antifouling coatings by condensation reaction. This coating only needs to be cured at room temperature. Thechemical composition of the PEG precursor was characterized by
1
H-NMR and FTIR. The length effect of the hydrophobic segments in the PEG-containing precursors and the content of fluorine precursors on the surface reconstructionwere investigated by SEM-EDS
water uptake and contact angle measurements.The results showed that the coating was more stable in water when the hydrophobic segments in PEG precursor were longer. The reason was that the surface containing longer hydrophobic segments was not easy to suffer reconstruction. The longer the PEG precursor chain segmentwas
the easier to form a stable hydration layer on the surface of the coating. However
the presence of fluorine-containing precursors facilitated the emigration of PEG chains to the coating/water interface.This was because that the hydrophilic segments and hydrophobic segments were incompatible
and microphase separationoccurred after the introduction of fluorine precursor
therefore promoting the migration of PEG segments to the surface.The anti-biofouling performances of the cross-linked network coatings were evaluated by biofouling assays using FITC-BSA
bacteria Escherichia coli and the fouling diatom Navicula. The results indicated that these fluorine-containing amphiphilic coatings exhibited significant protein resistance
antibacterial property and diatom resistance for diatom Navicula
compared with the coating without fluorine segments. And the anti-fouling performances of the coating increased with increasing amount of FMS-9922.However
when the FMS-9922 content was too high
the coating compatibility decreased
causing worse antifouling performance. An appropriate content of FMS-9922 was found to be 7%.
硅氢加成表面重排双亲涂层防污
HydrosilylationSurface reconstructionAmphiphilic coatingsAntifouling
M Lejars , A Margaillan , C Bressy . . Chem Rev , 2012 . 112 ( 8 ): 4347 - 4390 . DOI:10.1021/cr200350vhttp://doi.org/10.1021/cr200350v.
M P Schultz , J A Bendick , E R Holm , W M Hertel . . Biofouling , 2011 . 27 ( 1 ): 87 - 98 . DOI:10.1080/08927014.2010.542809http://doi.org/10.1080/08927014.2010.542809.
H John , Z H Kelli , S Geoffrey , S Abraham , G Harrison , L Kody , H Michael . . Biofouling , 2015 . 31 ( 8 ): 625 - 638 . DOI:10.1080/08927014.2015.1081687http://doi.org/10.1080/08927014.2015.1081687.
A Tsuboi , H Okamura , N Kaewchuay , K Fukushi , X J Zhou , T Nishida . . Environ Technol , 2013 . 34 ( 20 ): 2835 - 2840 . DOI:10.1080/09593330.2013.790083http://doi.org/10.1080/09593330.2013.790083.
S Sommer , A Ekin , D C Webster , S J Stafslien , J Daniels , L J vanderWal . . Biofouling , 2010 . 26 ( 8 ): 961 - 972 . DOI:10.1080/08927014.2010.531272http://doi.org/10.1080/08927014.2010.531272.
R Ciriminna , F V Bright , M Pagliaro . . ACS Sustainable Chemistry & Engineering , 2015 . 3 ( 4 ): 559 - 565.
T Bashir , M Skrifvars , N K Persson . . Materials Techology , 2011 . 26 ( 3 ): 135 - 139 . DOI:10.1179/175355511X13007211258926http://doi.org/10.1179/175355511X13007211258926.
P Shivapooja , C Y Cao , B Orihuela , V Levering , X H Zhao , D Rittschof , G P Lopez . . Biofouling , 2016 . 32 ( 9 ): 1017 - 1028 . DOI:10.1080/08927014.2016.1209186http://doi.org/10.1080/08927014.2016.1209186.
C Carl , A J Poole , M J Vucko , M R Williams , S Whalan , R Nys de . . Biofouling , 2012 . 28 ( 10 ): 1077 - 1091 . DOI:10.1080/08927014.2012.728588http://doi.org/10.1080/08927014.2012.728588.
B Vengadaesvaran , N Arun , R Chanthiriga , A R Bushroa , S R Rau , K Ramesh , R VIkneswaran , G H E Alshabeeb , S Ramesh , A K Arof . . Surf Eng , 2014 . 30 ( 3 ): 177 - 182 . DOI:10.1179/1743294413Y.0000000238http://doi.org/10.1179/1743294413Y.0000000238.
Q Y Xie , C F Ma , C Liu , J L Ma , G Z Zhang . . ACS Appl Mater Interface , 2015 . 7 ( 38 ): 21030 - 21037 . DOI:10.1021/acsami.5b07325http://doi.org/10.1021/acsami.5b07325.
R D Michael , C Rosaria , V B Frank , P Mario . . Acc Chem Res , 2014 . 47 ( 2 ): 678 - 687 . DOI:10.1021/ar400240nhttp://doi.org/10.1021/ar400240n.
A Z Kelli , W S Geoffrey . . Biofouling , 2014 . 30 ( 1 ): 115 - 129 . DOI:10.1080/08927014.2013.847927http://doi.org/10.1080/08927014.2013.847927.
E Martinelli , M Suffredini , G Galli , A Glisenti , M E Pettitt , M E Callow , J A Callow , D Williams , G Lyall . . Biofouling , 2011 . 27 ( 5 ): 529 - 541 . DOI:10.1080/08927014.2011.584972http://doi.org/10.1080/08927014.2011.584972.
S Kim , T Gim , S M Kang . . ACS Appl Mater Interface , 2015 . 7 ( 12 ): 6412 - 6416 . DOI:10.1021/acsami.5b01304http://doi.org/10.1021/acsami.5b01304.
E Martinelli , J A Finaly , M E Callow , J A Callow , A Glisenti , G Galli . . ProgOrg Coat , 2016 . 90 235 - 242.
G Galli , D Barsi , E Martinelli , A Glisenti , J A Finlay , M E Callow , J A Callow . . RSC Adv , 2016 . 6 ( 71 ): 67127 - 67135 . DOI:10.1039/C6RA15104Chttp://doi.org/10.1039/C6RA15104C.
E Martinelli , M K Sarvothaman , G Galli , M E Pettitt , M E Callow , J A Callow , S L Callow , D Williams , G Lyall . . Biofouling , 2012 . 28 ( 6 ): 571 - 582 . DOI:10.1080/08927014.2012.697897http://doi.org/10.1080/08927014.2012.697897.
Y Wang , L M Pitet , J A Finlay , L H Brewer , G Cone , D E Betts , J A Callow , D E Wendt . . Biofouling , 2011 . 27 ( 10 ): 1139 - 1150 . DOI:10.1080/08927014.2011.629344http://doi.org/10.1080/08927014.2011.629344.
E Martinelli , E Guazzelli , C Bartoli , M Gazzarri , F Chiellini , G Galli , M E Callow , J A Callow , J A Finlay , S Hill . . J Polym Sci, Part A: Polym Chem , 2015 . 53 ( 10 ): 1213 - 1225 . DOI:10.1002/pola.v53.10http://doi.org/10.1002/pola.v53.10.
0
Views
28
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution