has a limited application in fibers because of its slow crystallization rate and large spherulite size. Therefore
the key to expand applications of PHBV fibers is to control its crystallization behavior. In consideration that the characteristics of the original bio-based materials PHBV will be changed after chemical modification
nano-hybrid technology is applied in this study to regulate heterogeneous nucleation behavior of PHBV after introducing nano-tungsten sulfide into PHBV system. In addition
drawing induced during melt crystallization process tends to change the crystalline structure of the polymers and thus to change the mechanical properties of PHBV fibers. Hence
effects of heterogeneous nucleation and draft induction on the crystal structure and the mechanical properties of the fibers were studied in this paper
via
differential scanning calorimeter (DSC)
polarizing microscope (POM) equipped with hot stage
two-dimensional wide-angle X-ray diffraction (2D-WXRD) and fiber strength tester. It was found that the crystallization temperature of PHBV increased obviously with the induction of WS
2
nanoparticle. When the content of WS
2
was 2 wt%
the crystallization temperature of the composite materials increased to 115-130℃
about 25℃ higher than that of neat PHBV. When WS
2
component was induced
the nucleation density of PHBV/WS
2
composite materials was enhanced significantly and the nucleation activity
Φ
of the resultant composite decreased from 1.0 to 0.49 without influencing the radial growth rate of PHBV spherulites. With the increase in draft rate and WS
2
content
the tensile strength of fibers increased first and then decreased. When the addition of WS
2
content was 1 wt% and a uniaxial draw of 3.8 times was adapted
the crystal orientation of the fibers was enhanced
and the
β
-form crystal structure was produced
and thus the tensile strength of composite fibers increased from 37 MPa for pure PHBV to 155 MPa and the elongation at break increased from 2.4% to 45%.
M Joshi , B S Butola . . Polymer , 2004 . 45 ( 14 ): 4953 - 4968 . DOI:10.1016/j.polymer.2004.04.057http://doi.org/10.1016/j.polymer.2004.04.057.
L Q Wei , N M Stark , A G McDonald . . Green Chem , 2015 . 17 ( 10 ): 4800 - 4814 . DOI:10.1039/C5GC01568Ehttp://doi.org/10.1039/C5GC01568E.
A Salam , L A Lucia , H Jameel . . ACS Sustain Chem Eng , 2013 . 1 ( 12 ): 1584 - 1592 . DOI:10.1021/sc400226mhttp://doi.org/10.1021/sc400226m.
J P D Mesquita , C L Donnici , I F Teixeira , F V Pereira . . Carbohyd Polym , 2012 . 90 ( 1 ): 210 - 217 . DOI:10.1016/j.carbpol.2012.05.025http://doi.org/10.1016/j.carbpol.2012.05.025.
M Martinez-Sanz , M Villano , C Oliveira , M G E Albuquerque , M Majone , M Reis , A Lopez-Rubio , J M Lagaron . . New Biotechnol , 2014 . 31 ( 4 ): 364 - 376 . DOI:10.1016/j.nbt.2013.06.003http://doi.org/10.1016/j.nbt.2013.06.003.
H Y Yu , Z Y Qin , Z Zhou . . Prog Nat Sci Mater , 2011 . 21 ( 6 ): 478 - 484 . DOI:10.1016/S1002-0071(12)60086-0http://doi.org/10.1016/S1002-0071(12)60086-0.
H X Xiang , X S Wen , X H Miu , Y Li , Z Zhou , M F Zhu . . Prog Nat Sci Mater , 2016 . 26 ( 1 ): 58 - 64 . DOI:10.1016/j.pnsc.2016.01.007http://doi.org/10.1016/j.pnsc.2016.01.007.
H X Xiang , S H Chen , Y H Cheng , Z Zhou , M F Zhu . . Express Polym Lett , 2013 . 7 ( 9 ): 778 - 786 . DOI:10.3144/expresspolymlett.2013.75http://doi.org/10.3144/expresspolymlett.2013.75.
A M Diez-Pascual , A L Diez-Vicente . . ACS Appl Mater Inter , 2014 . 6 ( 12 ): 9822 - 9834 . DOI:10.1021/am502261ehttp://doi.org/10.1021/am502261e.
M Naffakh , C Marco , G Ellis . . Crystengcomm , 2014 . 16 ( 6 ): 1126 - 1135 . DOI:10.1039/C3CE41987Hhttp://doi.org/10.1039/C3CE41987H.
Salem D R. Structure formation in polymeric fibers:Hanser Verlag; 2001
W Phetwarotai , V Tanrattanakul , N Phusunti . . Chinese J Polym Sci , 2016 . 34 ( 9 ): 1129 - 1140 . DOI:10.1007/s10118-016-1834-0http://doi.org/10.1007/s10118-016-1834-0.
A Dobreva , I Gutzow . .J Non-Cryst Solids , 1993 . 162 ( 1 ): 13 - 25.
Q Lv , C Xu , D Wu , Z Wang , R Lan , L Wu . . Compos Part A-Appl S , 2017 . 92 17 - 26 . DOI:10.1016/j.compositesa.2016.10.035http://doi.org/10.1016/j.compositesa.2016.10.035.
Y Wang , S Chen , S Zhang , L Ma , G Shi , L Yang . . Thermochim Acta , 2016 . 627 68 - 76.
S Yang , Y Li , Y Y Liang , W J Wang , Y Luo , J Z Xu , Z M Li . . RSC Adv , 2016 . 6 ( 28 ): 23930 - 23941 . DOI:10.1039/C5RA26902Dhttp://doi.org/10.1039/C5RA26902D.
H X Xiang , W Chen , Z Y Chen , B Sun , M F Zhu . . Compos Sci Technol , 2017 . 142 207 - 213 . DOI:10.1016/j.compscitech.2017.02.016http://doi.org/10.1016/j.compscitech.2017.02.016.
T Iwata , Y Aoyagi , M Fujita , H Yamane , Y Doi , Y Suzuki , A Takeuchi , K Uesugi . . Macromol Rapid Commun , 2004 . 25 ( 11 ): 1100 - 1104 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
Effect of High Pressure on Crystallization Structure and Mechanical Properties of Polybutene-1 and Polypropylene Blends
Effect of Humidity on Mechanical Behavior of Polymer Hydrogen-bonding Complex Fibers
Photo-regulated Reversible Growth of Inimer-containing Crosslinked Polymers
Effect of Hard Segment Content on the Water Absorption Dynamic and Mechanical Properties of Polyurethane Elastomer
Related Author
No data
Related Institution
National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University
Institute for Advanced Study, Chengdu University
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China