浏览全部资源
扫码关注微信
中国科学院化学研究所 高分子物理与化学国家重点实验室 北京 100190
Published:2017-6,
Received:13 January 2017,
Revised:16 February 2017,
扫 描 看 全 文
Fu-xin Liang, Zhen-zhong Yang. Progress in Janus Composites toward Interfacial Engineering. [J]. Acta Polymerica Sinica (6):883-892(2017)
Fu-xin Liang, Zhen-zhong Yang. Progress in Janus Composites toward Interfacial Engineering. [J]. Acta Polymerica Sinica (6):883-892(2017) DOI: 10.11777/j.issn1000-3304.2017.17012.
Janus材料集成不同组成/功能于一体,具有明确的空间分区特征,是一类特殊的高分子复合功能材料.有机高分子链提供亲水/亲油及响应特性,无机组成提供丰富的光、电、磁、热等功能性.两亲性的Janus材料在高效稳定界面同时,还能赋予界面功能性并可在外场作用下实现操控.本文重点总结了不同结构和功能的Janus材料在稳定界面和调控界面的近期主要进展,包括聚集行为、固体乳化剂、界面增容、界面催化、功能涂层、细胞诊断与治疗等方面.
Janus is named after the Roman god who is depicted to have two opposite faces looking at the past and the future. In 1991
de Gennes introduced the Janus particles in his Nobel lecture. Janus materials have triggered extensive research interests in academia and industry. Janus composites possess two different chemical regions and functions that are distinctly compartmentalized onto the same object. While the organic polymer components provide tunable wettability and responsive performances
the inorganic (or metallic) components offer desired functionalities such as magnetic manipulation and light thermal effect. We have developed methods to precisely tune shape
size
microstructure and chemistry of Janus composites and therefore their performance. In analogy to molecular surfactants or copolymers
the amphiphilic Janus composites can stabilize interfaces more effectively. Similarly
the Janus composites can serve as emulsifiers in emulsion polymerization and as compatibilizers for polymer alloys. Moreover
the interfaces stabilized with the Janus composites can be easily manipulated by using external stimuli
and functionalized by delivering desired species thereby. By grafting responsive polymer chains
the emulsions can be de-stabilized by simple changing pH
temperature
light irradiation or exchanging of ions. When Janus composites contain paramagnetic species
the emulsion droplets can be withdrawn with a magnet. The droplets are further coalesced
leading to de-emulsification under a stronger magnetic field. This performance is important to remedy polluted water or soil with organic species in the presence of surfactants. By conjugation of heterogeneous catalysts onto the Janus composites
the catalytic efficiency of the catalysts is greatly enhanced. Functional species such as Fe
3
O
4
or Au nanoparticles (NPs) can be delivered toward an oil/water interface when these NPs are grafted with hydrophobic and thermally responsive chains such as PNIPAM at the opposite sides. The de-emulsification can be easily achieved under NIR irradiationeven when the continuous phase temperature is below the LCST of PNIPAM(~32 ℃). The performance is enhanced from an interactive interplay between the hyperthermia effect of nanoparticles and a thermal energy transfer to fast locally heat PNIPAM.This performance is promising in heterogeneous catalysis and recycling of expensive catalysts. Wettability of Janus composites can be significantly magnified by nanoscale roughness. Robust superhydrophobic coatings are easily fabricated by forming a self-assembled monolayer of coarsening Janus microparticles and catalytic crosslinking the intermediate epoxy resin adhesive. In this Review
recent progress in manipulation of interfaces by Janus composites is summarized
including in emulsions and polymer alloys
interfacial heterogeneous catalysis
functional coatings
cell diagnosis and therapy.
Janus复合材料两亲性功能界面
JanusCompositesAmphiphilicFunctionalInterface
C Casagrande , P Fabre , E Raphaël , M Veyssié . . Europhys Lett , 1989 . 9 ( 30 ): 251 - 255 . http://iopscience.iop.org/article/10.1209/0295-5075/9/3/011/meta.
P G de Gennes . . Rev Mod Phys , 1992 . 64 645 - 648 . DOI:10.1103/RevModPhys.64.645http://doi.org/10.1103/RevModPhys.64.645.
A Walther , A H E Müller . . Chem Rev , 2013 . 113 5194 - 5261 . DOI:10.1021/cr300089thttp://doi.org/10.1021/cr300089t.
S Jiang , S Granick . Janus Particles Synthesis, Self-assembly and Applications , : London RSC , 2012 .
F X Laing , C L Zhang , Z Z Yang . . Adv Mater , 2014 . 26 ( 40 ): 6944 - 6949 . DOI:10.1002/adma.v26.40http://doi.org/10.1002/adma.v26.40.
Chengliang Zhang , Wei Wei , Fuxin Liang , Zhenzhong Yang . . Scientia Sinica Chimica , 2012 . 11 1616 - 1626 . http://chem.scichina.com:8081/sciB/EN/abstract/abstract509255.shtml.
张 成亮 , 韦 玮 , 梁 福鑫 , 杨 振忠 . . 中国科学:化学 , 2012 . 11 1616 - 1626 . http://chem.scichina.com:8081/sciB/EN/abstract/abstract509255.shtml.
Fuxin Liang , Bing Liu , Zhenzhong Yang . . Polymer Bulletin , 2016 . ( 9 ): 45 - 51 . http://www.gfztb.com/oa/DArticle.aspx?type=view&id=20160905.
梁 福鑫 , 刘 冰 , 杨 振忠 . . 高分子通报 , 2016 . ( 9 ): 45 - 51 . http://www.gfztb.com/oa/DArticle.aspx?type=view&id=20160905.
L Hong , A Cacciuto , E Luijten , S Granick . . Nano Lett , 2006 . 6 ( 11 ): 2510 - 2514 . DOI:10.1021/nl061857ihttp://doi.org/10.1021/nl061857i.
J Yan , K Chaudhary , S C Bae , J A Lewis , S Granick . . Nat Commun , 2013 . 4 1516 DOI:10.1038/ncomms2520http://doi.org/10.1038/ncomms2520.
L Nie , S Y Liu , W M Shen , D Y Chen , M Jiang . . Angew Chem Int Ed , 2007 . 119 6321 - 6324 . http://test.europepmc.org/abstract/MED/17640028.
L Cheng , G Z Zhang , L Zhu , D Y Chen , M Jiang . . Angew Chem Int Ed , 2008 . 120 10171 - 10174 . http://labs.europepmc.org/abstract/MED/19009578.
Q Chen , J K Whitmer , S Jiang , S C Bae , E Luijten , S Granick . . Science , 2011 . 331 199 - 202 . DOI:10.1126/science.1197451http://doi.org/10.1126/science.1197451.
L Hong , A Cacciuto , E Luijten , S Granick . . Langmuir , 2008 . 24 ( 3 ): 621 - 625 . DOI:10.1021/la7030818http://doi.org/10.1021/la7030818.
J Yan , M Bloom , S C Bae , E Luijten , S Granick . . Nature , 2012 . 491 578 - 582 . DOI:10.1038/nature11619http://doi.org/10.1038/nature11619.
S Gangwal , O J Cayre , O D Velev . . Langmuir , 2008 . 24 ( 23 ): 13312 - 13320 . DOI:10.1021/la8015222http://doi.org/10.1021/la8015222.
D Dendukuri , A HattonT , P S Doyle . . Langmuir , 2007 . 23 4669 - 4674 . DOI:10.1021/la062512ihttp://doi.org/10.1021/la062512i.
D Zerrouki , J Baudry , D Pine , P Chaikin , J Bibette . . Nature , 2008 . 455 380 - 382 . DOI:10.1038/nature07237http://doi.org/10.1038/nature07237.
ChenQ , S C Bae , S Granick . . Nature , 2011 . 469 381 - 384 . DOI:10.1038/nature09713http://doi.org/10.1038/nature09713.
S U Pickering . . J Chem Soc , 1907 . 91 2001 - 2021 . DOI:10.1039/CT9079102001http://doi.org/10.1039/CT9079102001.
P BinksB , S O Lumsdon . . Langmuir , 2001 . 17 4540 - 4547 . DOI:10.1021/la0103822http://doi.org/10.1021/la0103822.
E Vignati , R Piazza , T P Lockhart . . Langmuir , 2003 . 19 6650 - 6656 . DOI:10.1021/la034264lhttp://doi.org/10.1021/la034264l.
R Aveyard , B P Binks , J H Clint . . Adv Colloid Interface Sci , 2003 . 100 503 - 546 . http://www.sciencedirect.com/science/article/pii/S0001868602000696.
B P Binks , S O Lumsdon . . Langmuir , 2000 . 16 2539 - 2547 . DOI:10.1021/la991081jhttp://doi.org/10.1021/la991081j.
N Glaser , D J Adams , A Boker , G Krausch . . Langmuir , 2006 . 22 5227 - 5229 . DOI:10.1021/la060693ihttp://doi.org/10.1021/la060693i.
S Jiang . . Langmuir , 2008 . 24 ( 6 ): 2438 - 2455 . DOI:10.1021/la703274ahttp://doi.org/10.1021/la703274a.
C Tang , C L Zhang , J G Liu , X Z Qu , J L Li , Z Z Yang . . Macromolecules , 2010 . 43 5114 - 5120 . DOI:10.1021/ma100437thttp://doi.org/10.1021/ma100437t.
C L Zhang , B Liu , C Tang , J G Liu , X Z Qu , J L Li , Z Z Yang . . Chem Commun , 2010 . 46 4610 - 4612 . DOI:10.1039/c0cc00054jhttp://doi.org/10.1039/c0cc00054j.
B Liu , J G Liu , X LiangF , Q Wang , C L Zhang , X Z Qu , J L Li , Z Z Yang . . Macromolecules , 2012 . 45 5176 - 5184 . DOI:10.1021/ma300409rhttp://doi.org/10.1021/ma300409r.
C Tang , C L Zhang , Y J Sun , F X Liang , Q Wang , J L Li , X Z Qu , Z Z Yang . . Macromolecules , 2013 . 46 188 - 193 . DOI:10.1021/ma3020883http://doi.org/10.1021/ma3020883.
Y J Sun , F X Liang , X Z Qu , Q Wang , Z Z Yang . . Macromolecules , 2015 . 48 2715 - 2722 . DOI:10.1021/acs.macromol.5b00207http://doi.org/10.1021/acs.macromol.5b00207.
B J Park , D Lee . . ACS Nano , 2012 . 6 782 - 790 . DOI:10.1021/nn204261whttp://doi.org/10.1021/nn204261w.
NonomuraY , S Komura , K Tsujii . . Langmuir , 2004 . 20 11821 - 11823 . DOI:10.1021/la0480540http://doi.org/10.1021/la0480540.
F X Liang , K Shen , X Z Qu , C L Zhang , Q Wang , J L Li , J G Liu , Z Z Yang . . Angew Chem Int Ed , 2011 . 50 2379 - 2382 . DOI:10.1002/anie.201007519http://doi.org/10.1002/anie.201007519.
ChenY , F X Liang , H L Yang , C L Zhang , Q Wang , X Z Qu , J L Li , L CaiY , D Qiu , Z Z Yang . . Macromolecules , 2012 . 45 1460 - 1467 . DOI:10.1021/ma2021908http://doi.org/10.1021/ma2021908.
JW Kim , D Lee , H C Shum , D A Weitz . . AdvMater , 2008 . 20 3239 - 3243 . http://onlinelibrary.wiley.com/doi/10.1002/adma.200800484/full.
S H Kim , A Abbaspourrad , D A Weitz . . J Am Chem Soc , 2011 . 133 5516 - 5524 . DOI:10.1021/ja200139whttp://doi.org/10.1021/ja200139w.
H L Yang , F X Liang , X Wang , Y Chen , C L Zhang , Q Wang , X Z Qu , J L Li , D C Wu , Z Z Yang . . Macromolecules , 2013 . 46 ( 7 ): 2754 - 2759 . DOI:10.1021/ma400261yhttp://doi.org/10.1021/ma400261y.
ZG Zhao , F X Liang , G L Zhang , X Y Ji , Q Wang , X Z Qu , X M Song , Z Z Yang . . Macromolecules , 2015 . 48 3598 - 3603 . DOI:10.1021/acs.macromol.5b00365http://doi.org/10.1021/acs.macromol.5b00365.
Z Q Cao , G J Wang , Y Chen , F X Liang , Z Z Yang . . Macromolecules , 2015 . 48 7256 - 7261 . DOI:10.1021/acs.macromol.5b01257http://doi.org/10.1021/acs.macromol.5b01257.
X Y Ji , Q Zhang , F X Liang , Q N Chen , X Z Qu , C L Zhang , Q Wang , J L Li , X M Song , Z Z Yang . . Chem Commun , 2014 . 50 5706 - 5709 . DOI:10.1039/c4cc00649fhttp://doi.org/10.1039/c4cc00649f.
Y J Liu , F X Liang , WangQ , X Z Qu , Z Z Yang . . Chem Commun , 2015 . 51 3562 - 3565 . DOI:10.1039/C4CC08420Ahttp://doi.org/10.1039/C4CC08420A.
Y J Liu , Q Wang , X Z Qu , F X Liang , Z Z Yang . . Sci China Mater , 2015 . 58 126 - 131 . DOI:10.1007/s40843-015-0027-4http://doi.org/10.1007/s40843-015-0027-4.
P Zhou , Q Wang , C L Zhang , F X Liang , X Z Qu , J L Li , Z Z Yang . . Chin Chem Lett , 2015 . 26 657 - 661 . DOI:10.1016/j.cclet.2015.04.006http://doi.org/10.1016/j.cclet.2015.04.006.
P Zhou , F X Liang , Y J Liu , R H Deng , H L Yang , Q Wang , X Z Qu , Z Z Yang . . Sci China Mater , 2015 . 58 961 - 968 . DOI:10.1007/s40843-015-0103-9http://doi.org/10.1007/s40843-015-0103-9.
YaoXH , J Y Jing , F X Liang , Z Z Yang . . Macromolecules , 2016 . 49 ( 24 ): 9618 - 9625 . DOI:10.1021/acs.macromol.6b02004http://doi.org/10.1021/acs.macromol.6b02004.
A Walther , K Matussek , A H E Müller . . ACS Nano , 2008 . 2 1167 - 1178 . DOI:10.1021/nn800108yhttp://doi.org/10.1021/nn800108y.
R Bahrami , T I Löbling , A H Gröschel , H Schmalz , A H E Müller , V Altstädt . . ACS Nano , 2014 . 8 10048 - 10056 . DOI:10.1021/nn502662phttp://doi.org/10.1021/nn502662p.
K C Bryson , I LöblingT , A H Müller , T P Russell , R C Hayward . . Macromolecules , 2015 . 48 4220 - 4227 . DOI:10.1021/acs.macromol.5b00640http://doi.org/10.1021/acs.macromol.5b00640.
H R Nie , C Zhang , Y W Liu , A H He . . Macromolecules , 2016 . 49 2238 - 2244 . DOI:10.1021/acs.macromol.6b00159http://doi.org/10.1021/acs.macromol.6b00159.
W Li , B J Dong , L T Yan . . Macromolecules , 2013 . 46 7465 - 7476 . DOI:10.1021/ma4009884http://doi.org/10.1021/ma4009884.
C E Estridge , A Jayaraman . . ACS Macro Lett , 2015 . 4 155 - 159 . DOI:10.1021/mz500793ehttp://doi.org/10.1021/mz500793e.
CrossleyS , J Faria , M Shen , D E Resaco . . Science , 2010 . 327 68 - 72 . DOI:10.1126/science.1180769http://doi.org/10.1126/science.1180769.
J Faria , M P M Ruiz , D E Resaco . . Adv Synth Catal , 2010 . 352 2359 - 2364 . DOI:10.1002/adsc.v352:14/15http://doi.org/10.1002/adsc.v352:14/15.
X Y Ji , Q Zhang , X Z Qu , Q Wang , X M Song , F X Liang , Z Z Yang . . RSC Adv , 2015 . 5 21877 - 21880 . DOI:10.1039/C5RA02330Khttp://doi.org/10.1039/C5RA02330K.
A Kirillova , C Schliebe , G Stoychev , A Jakob , H Lang , A Synytska . . ACS Appl Mater Interfaces , 2015 . 7 21218 - 21225 . DOI:10.1021/acsami.5b05224http://doi.org/10.1021/acsami.5b05224.
W Cao , R L Huang , W Qi , X SuR , ZM He . . ACS Appl Mater Interfaces , 2015 . 7 465 - 473 . DOI:10.1021/am5065156http://doi.org/10.1021/am5065156.
F X Liang , J G Liu , C L Zhang , X Z Qu , J L Li , Z Z Yang . . Chem Commun , 2011 . 47 1231 - 1233 . DOI:10.1039/C0CC03599Hhttp://doi.org/10.1039/C0CC03599H.
H Zhang , Q Wang , B Y Jiang , F X Liang , Z Z Yang . . ACS Appl Mater Interfaces , 2016 . 8 ( 48 ): 33250 - 33255 . DOI:10.1021/acsami.6b12472http://doi.org/10.1021/acsami.6b12472.
Y Chen , H L Yang , C L Zhang , Q Wang , X Z Qu , J L Li , F X Liang , Z Z Yang . . Macromolecules , 2013 . 46 4126 - 4130 . DOI:10.1021/ma4006236http://doi.org/10.1021/ma4006236.
Q G Wang , F X Liang , Q Wang , X Z Qu , Z Z Yang . . Chinese J Polym Sci , 2015 . 33 1462 - 1469 . DOI:10.1007/s10118-015-1691-2http://doi.org/10.1007/s10118-015-1691-2.
L L Zhao , L J Zhu , Y Chen , Q Wang , J L Li , C L Zhang , F X Liang , X Z Qu , Z Z Yang . . Chem Commun , 2013 . 49 6161 - 6163 . DOI:10.1039/c3cc42505chttp://doi.org/10.1039/c3cc42505c.
L Tang , F Y Zhu , F X Liang , Q Wang , X Z Qu , Z Z Yang . . ACS Appl Mater Interfaces , 2016 . 8 12056 - 12062 . DOI:10.1021/acsami.6b03208http://doi.org/10.1021/acsami.6b03208.
S Berger , L Ionov , A Synytska . . Adv Funct Mater , 2011 . 21 2338 - 2344 . DOI:10.1002/adfm.v21.12http://doi.org/10.1002/adfm.v21.12.
A Synytska , R Khanum , L Ionov , C Cherif , C Bellmann . . ACS Appl Mater Interfaces , 2011 . 3 ( 4 ): 1216 - 1220 . DOI:10.1021/am200033uhttp://doi.org/10.1021/am200033u.
H L Yang , F X Liang , Y Chen , Q Wang , X Z Qu , Z Z Yang . . NPG Asia Mater , 2015 . 7 e176 DOI:10.1038/am.2015.33http://doi.org/10.1038/am.2015.33.
H Zhao , F X Liang , X Z Qu , Q Wang , Z Z Yang . . Macromolecules , 2015 . 48 700 - 706 . DOI:10.1021/ma502421zhttp://doi.org/10.1021/ma502421z.
M Yoshida , K H Roh , S Mandal , S Bhaskar , D Lim , H Nandivada , X. Lahann Deng . . J. Adv Mater , 2009 . 21 4920 - 4925 . DOI:10.1002/adma.v21:48http://doi.org/10.1002/adma.v21:48.
L Y Wu , B M Ross , S G Hong , L P Lee . . Small , 2010 . 4 503 - 507 . http://europepmc.org/abstract/MED/20108232.
C J Xu , B D Wang , S H Sun . . JAm Chem Soc , 2009 . 131 4216 - 4217 . DOI:10.1021/ja900790vhttp://doi.org/10.1021/ja900790v.
F Wang , G M Pauletti , J T Wang , J M Zhang , R C Ewing , Y L Wang , D L Shi . . Adv Mater , 2013 . 25 3485 - 3489 . DOI:10.1002/adma.v25.25http://doi.org/10.1002/adma.v25.25.
S H Hu , X H Gao . . J Am Chem Soc , 2010 . 132 7234 - 7237 . DOI:10.1021/ja102489qhttp://doi.org/10.1021/ja102489q.
Y J Wu , X K Lin , Z G Wu , H Möhwald , Q He . . ACS Appl Mater Interfaces , 2014 . 6 10476 - 10481 . DOI:10.1021/am502458hhttp://doi.org/10.1021/am502458h.
H M Dong , Y Q Ma . . Nanoscale , 2012 . 4 1116 - 1122 . DOI:10.1039/C1NR11425Ehttp://doi.org/10.1039/C1NR11425E.
Y Gao , Y Yu . . J Am Chem Soc , 2013 . 151 19091 - 19094 . http://europepmc.org/abstract/med/24308498.
0
Views
57
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution