which can be specifically degraded by matrix metalloproteinases 2 (MMP-2)
was conjugated into polylactic acid (PLA)
constructing therefore a new type of MMP-responsive drug delivery system (DDS). Microparticles with core-shell structure were fabricated using coaxial electrospray. PEG was used as the shell and PLA-
b
-peptide-
b
-PLA as the core material. The water-soluble PEG shell was quickly removed from aqueous environment and the size of the microspheres was reduced from micron to nanometer scale. Eventually
MMP-2 responsive nanoparticles with a diameter of about 100 nm were obtained through coaxial electrospray-template removal method. MMP-2 response of the nanoparticles was investigated by the change of particle size and morphology with DLS and TEM. After coculturing with MMP-2 protease
the spherical skeleton of the nanoparticles was partly degraded. Meanwhile
part of the degraded particles got aggregated. This is because MMP-2 protease specifically cleave the peptide
resulting in the partly disassembly of the nanoparticles and random reassembling of PLA. Doxorubicin (DOX) was used as a model chemotherapeutic drug and loaded in the core of the nanoparticles. The drug loading content and entrapment efficiency of DOX were 0.326% and 75.3%
respectively. The
in vitro
release profile of DOX from the electrosprayed particles was studied. It was found that the encapsulated DOX was released from the nanoparticles
and the release was controlled by the stimulus of overexpressed MMP-2 protease
and the process lasted more than 20 days. The results show that coaxial electrospray-template removal method did not affect the matrix metalloproteinases response of the peptide
and thus the nanoparticles prepared have good MMP-2 responsiveness. Meanwhile
the size of the particles can be modulated by the coaxial electrospray-template removal method
and the nano-sized particles can be simply and effectively achieved. The study suggests that the coaxial electrospray-template removal method is a promising route to the preparation of stimuli-responsive drug delivery system.
S Ganta , H Devalapally , A Shahiwala , M Amiji . J Control Release , 2008 . 126 187 - 204 . DOI:10.1016/j.jconrel.2007.12.017http://doi.org/10.1016/j.jconrel.2007.12.017.
S Mura , J Nicolas , P Couvreur . Nat Mater , 2013 . 12 991 - 1003 . DOI:10.1038/nmat3776http://doi.org/10.1038/nmat3776.
D Roy , J N Cambre , B S Sumerlin . Prog Polym Sci , 2010 . 35 278 - 301 . DOI:10.1016/j.progpolymsci.2009.10.008http://doi.org/10.1016/j.progpolymsci.2009.10.008.
W Xiao , X Zeng , H Lin , K Han , H Z Jia , X Z Zhang . Chem Commun , 2015 . 51 1475 - 1478 . DOI:10.1039/C4CC08831Jhttp://doi.org/10.1039/C4CC08831J.
N Li , C Guo , Z Duan , L Yu , K Luo , J Lu , Z Gu . J Mater Chem B , 2016 . 4 3760 - 3769 . DOI:10.1039/C6TB00688Dhttp://doi.org/10.1039/C6TB00688D.
E S Olson , T Jiang , T A Aguilera , Q T Nguyen , L G Ellies , M Scadeng , R Y Tsien . Proc Natl Acad Sci , 2010 . 107 4311 - 4316 . DOI:10.1073/pnas.0910283107http://doi.org/10.1073/pnas.0910283107.
L Zhu , P Kate , V P Torchilin . ACS Nano , 2012 . 6 3491 - 3498 . DOI:10.1021/nn300524fhttp://doi.org/10.1021/nn300524f.
J M Pellikainen , K M Ropponen , V V Kataja , J K Kellokoski , M J Eskelinen , V M Kosma . Cli Cancer Res , 2004 . 10 7621 - 7628 . DOI:10.1158/1078-0432.CCR-04-1061http://doi.org/10.1158/1078-0432.CCR-04-1061.
W C Hung , W L Tseng , J Shiea , H C Chang . Cancer Lett , 2010 . 288 156 - 161 . DOI:10.1016/j.canlet.2009.06.032http://doi.org/10.1016/j.canlet.2009.06.032.
G Gu , H Xia , Q Hu , Z Liu , M Jiang , T Kang , D Miao , Y Tu , Z Pang , Q Song , L Yao , H Chen , X Gao , J Chen . Biomaterials , 2013 . 34 196 - 208 . DOI:10.1016/j.biomaterials.2012.09.044http://doi.org/10.1016/j.biomaterials.2012.09.044.
W H Chen , G F Luo , Q Lei , H Z Jia , S Hong , Q R Wang , R X Zhuo , X Z Zhang . Chem Commun , 2015 . 51 465 - 468 . DOI:10.1039/C4CC07563Chttp://doi.org/10.1039/C4CC07563C.
D Bacinello , E Garanger , D Taton , K C Tam , S Lecommandoux . Eur Polym J , 2015 . 62 363 - 373 . DOI:10.1016/j.eurpolymj.2014.09.001http://doi.org/10.1016/j.eurpolymj.2014.09.001.
CJ Rijcken , O Soga , W E Hennink , C F van Nostrum . J Control Release , 2007 . 120 131 - 148 . DOI:10.1016/j.jconrel.2007.03.023http://doi.org/10.1016/j.jconrel.2007.03.023.
T M Allen , P R Cullis . Science , 2004 . 303 1818 - 1822 . DOI:10.1126/science.1095833http://doi.org/10.1126/science.1095833.
K M Yun , A B Suryamas , C Hirakawa , F Iskandar , K Okuyama . Langmuir , 2009 . 25 11038 - 11042 . DOI:10.1021/la901343jhttp://doi.org/10.1021/la901343j.
H Ho , J Lee . Macromol Res , 2011 . 19 815 - 821 . DOI:10.1007/s13233-011-0814-zhttp://doi.org/10.1007/s13233-011-0814-z.
H Nie , Z Dong , D Y Arifin , Y Hu , C H Wang . J Biomedl Mater Res A , 2010 . 95A 709 - 716 . DOI:10.1002/jbm.a.v95a:3http://doi.org/10.1002/jbm.a.v95a:3.
Y H Lee , M Y Bai , D R Chen . Colloids Surf B , 2011 . 82 104 - 110 . DOI:10.1016/j.colsurfb.2010.08.022http://doi.org/10.1016/j.colsurfb.2010.08.022.
S Chakraborty , I C Liao , A Adler , K W Leong . Adv Drug Delivery Rev , 2009 . 61 1043 - 1054 . DOI:10.1016/j.addr.2009.07.013http://doi.org/10.1016/j.addr.2009.07.013.
Y Jing , Y Zhu , X Yang , J Shen , C Li . Langmuir:the ACS J Surf Colloids , 2011 . 27 1175 - 1180 . DOI:10.1021/la1042734http://doi.org/10.1021/la1042734.
L Cao , J Luo , K Tu , L Q Wang , H Jiang . Colloids Surf B , 2014 . 115 212 - 218 . DOI:10.1016/j.colsurfb.2013.11.046http://doi.org/10.1016/j.colsurfb.2013.11.046.