Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach
返回论文页
Research Article|更新时间:2021-01-26
|
Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach
Liu Xiao, Li Sheng-ran, Wu Yi-xian. Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach. [J]. Acta Polymerica Sinica (11):1753-1761(2017)
DOI:
Liu Xiao, Li Sheng-ran, Wu Yi-xian. Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach. [J]. Acta Polymerica Sinica (11):1753-1761(2017) DOI: 10.11777/j.issn1000-3304.2017.17023.
Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach
-polytetrahydrofuran graft copolymer with silver (Ag) nanoparticles
PVAc-
g
-PTHF/Ag
could be
in situ
prepared
via
combination of living cationic opening polymerization of tetrahydrofuran (THF) with allylBr/AgClO
4
initiating system at 0 ℃ with "grafting onto" synthetic approach. Fourier transform infrared spectroscopy (FTIR)
nuclear magnetic resonance (
1
H-NMR) and multi-angle laser light scattering-gel permeation chromatography (MALLS-GPC) were used to characterize the chemical structure
absolute weight-average molecular weight (
M
w
)
molecular weight distribution (
M
w
/
M
n
) and branching degree (g') of the resulting PVAc-
g
-PTHF graft copolymers. The micromorphology and crystallization behavior of the branched PTHF segments were investigated by atomic force microscope (AFM)
differential scanning calorimetry (DSC) and polarization microscopy (POM). The effect of the number of PTHF branches (Nb
PTHF) and number-average molecular weight (
M
n
PTHF
) of the PTHF branches on the micromorphology and crystallization rate of the resulting PVAc-
g
-PTHF graft copolymers was also investigated. The PVAc-
g
-PTHF graft copolymer with very high
M
w
of 4.52×10
5
relatively narrow molecular weight distribution (
M
w
/
M
n
~1.8) and high branching degree of 0.19 was achieved. The
M
w
of the PVAc-
g
-PTHF graft copolymers increased remarkably with increases in both
N
b
PTHF
and
M
n
PTHF
of the PTHF branches. The glass transition temperature of PVAc backbone (
T
g
PVAc
) in the PVAc-
g
-PTHF graft copolymers increased with increasing
M
n
PTHF
of the PTHF branches by keeping the grafting density constant. The obvious phase separation was formed from the PVAc-
g
-PTHF graft copolymers and the micromorphology was dependent on the copolymer composition and
N
b
PTHF
of the PTHF branches by keeping
M
n
PTHF
of the PTHF branches or branching chain length unchanged. Compared to the unconfined free PTHF macromolecules
the crystallization rate of PTHF branches in the PVAc-
g
-PTHF graft copolymer was sharply decreased by setting the molecular weights of PTHF segments at the same. The crystallization rate of PTHF segments was increased by increasing the molecular weights of PTHF segments. However
the molecular weight of PTHF presented less effect on its crystallization rate of PTHF branches in PVAc-
g
-PTHF graft copolymers than that in the unconfined free PTHF homopolymers. Both the melting point of crystalline from PTHF segments and the melting enthalpy of PTHF crystalline increased slightly with increasing
M
n
PTHF
of the PTHF branches. Moreover
All the resulting PVAc-
g
-PTHF graft copolymer with different numbers of PTHF branches and different branching lengths or molecular weights of PTHF branches with silver (Ag) nanoparticles show good antibacterial property
suggesting their potential applications in biological and medical fields.
H Cheradame , M Sassatelli , C Pomel , A Sanh , J Gau-Racine , L Bacri , L Auvray , P Guegan . Macromol Symp , 2008 . 261 ( 1 ): 167 - 181 . DOI:10.1002/(ISSN)1521-3900http://doi.org/10.1002/(ISSN)1521-3900.
C G Mu , X D Fan , W Tian , Y Bai , Z Yang , W W Fan , H Chen . Polym Chem , 2012 . 3 ( 12 ): 3330 - 3339 . DOI:10.1039/c2py20586fhttp://doi.org/10.1039/c2py20586f.
Y Z You , C Y Hong , W P Wang , P H Wang , W Q Lu , C Y Pan . Macromolecules , 2004 . 37 ( 19 ): 7140 - 7145 . DOI:10.1021/ma0493123http://doi.org/10.1021/ma0493123.
A R Guo , F Yang , R Yu , Y X Wu . Chinese J Polym Sci , 2015 . 33 ( 1 ): 23 - 35 . DOI:10.1007/s10118-015-1571-9http://doi.org/10.1007/s10118-015-1571-9.
A R Guo , W X Yang , F Yang , R Yu , Y X Wu . Macromolecules , 2014 . 47 5450 - 5461 . DOI:10.1021/ma501060yhttp://doi.org/10.1021/ma501060y.
M A Tasdelen , W V Camp , E Goethals , P Dubois , F Du Prez , Y Yagci . Macromolecules , 2008 . 41 ( 16 ): 6035 - 6040 . DOI:10.1021/ma801149xhttp://doi.org/10.1021/ma801149x.
S Aoshima , Y Segawa , Y Okada . J Polym Sci, Part A:Polym Chem , 2001 . 39 751 - 755 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
N Ding , B Q Shentu , P J Pan , G R Shan , Y Z Bao , Z X Weng . Ind Eng Chem Res , 2013 . 52 12897 - 12905 . DOI:10.1021/ie401958mhttp://doi.org/10.1021/ie401958m.
D Lee , R E Cohen , M F Rubner . Langmuir , 2005 . 21 9651 - 9659 . DOI:10.1021/la0513306http://doi.org/10.1021/la0513306.
H Kong , J Jang . Langmuir , 2008 . 24 2051 - 2056 . DOI:10.1021/la703085ehttp://doi.org/10.1021/la703085e.