浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
Published:20 November 2017,
Received:23 February 2017,
Revised:28 March 2017,
扫 描 看 全 文
Meng Qing-qing, Wang Bin, Pan Li, Li Yue-sheng, Ma Zhe. Synthesis and Properties of Isotactic Polypropylene Ionomers Containing Ammonium Ions. [J]. Acta Polymerica Sinica (11):1762-1772(2017)
Meng Qing-qing, Wang Bin, Pan Li, Li Yue-sheng, Ma Zhe. Synthesis and Properties of Isotactic Polypropylene Ionomers Containing Ammonium Ions. [J]. Acta Polymerica Sinica (11):1762-1772(2017) DOI: 10.11777/j.issn1000-3304.2017.17028.
合成了一系列高分子量、窄分子量分布且高等规度,含有不同-NR
3
+
X
-
离子基团含量的聚丙烯离聚体(
i
PP-NR
3
+
X
-
).以PP/IUD共聚物作为反应中间体,与三乙胺或
N
-甲基咪唑氨化得到聚丙烯离聚体.通过离子交换反应制备不同反离子的
N
-甲基咪唑聚丙烯离聚体,包括双三氟甲基磺酰亚胺根离子(Tf
2
N
-
)、四氟硼酸根离子(BF
4
-
)和六氟磷酸根离子(PF
6
-
).热重分析结果发现
N
-甲基咪唑聚丙烯离聚体的热稳定性明显优于三乙胺聚丙烯离聚体,表明不含
β
-H的
N
-甲基咪唑聚丙烯离聚体具有较高的热稳定性.同时,聚丙烯离聚体的表面亲水性得到明显改善.并且,聚丙烯离聚体的断裂伸长率也得到显著提高,最高达到900%.比较不同反离子聚丙烯离聚体的屈服强度和断裂强度发现I-聚丙烯离聚体具有最优的力学性能.
A series of well-defined isotactic polypropylene ionomers containing up to 6.47 mol% of-NR
3
+
X
-
ionic groups were synthesized using dimethyl (pyridylamino) hafnium catalyst
and proved to possess high molecular weight
narrow molecular weight distribution and high isotacticity. The propylene/11-iodo-1-undecene copolymers were taken as intermediates and the iodine groups underwent nucleophilic substitution reaction with triethylamine or
N
-methylimidazole to give isotactic polypropylene ionomers.
N
-methylimidazole polypropylene ionomers with different counter ions were prepared by ion exchange reaction
including bis (trifluoromenthylsulfonyl) imide ion (Tf
2
N
-
)
tetrafluoroborate ion (BF
4
-
) and hexafluorophosphate ion (PF
6
-
). For the synthesized ionomers
their thermal stability
hydrophilic and mechanical properties were studied in depth. First of all
the thermogravimetric analysis results showed that the thermal stability of the
N
-methylimidazole polypropylene ionomer was significantly higher than that of the triethylamine polypropylene ionomer. It was demonstrated that the
N
-methylimidazole polypropylene ionomers without
β
-H could improve the thermal stability of the copolymer. With increasing ion content
the average length of the polypropylene segments decreases
leading to the decreases of crystallization temperature and melting point for the polypropylene ionomers. Secondly
the surface hydrophilicity of the polypropylene ionomers was improved compared with PP. The critical ion contents for behaving as hydrophilic material (with water contact angle
<
90°) are 5.42 mol% and 2.97 mol% for triethylamine polypropylene ionomer and
N
-methylimidazole polypropylene ionomer
respectively. Thirdly
compared with polypropylene
the strain at break of polypropylene ionomers is remarkably increased
which even reaches 900%. For
N
-methylimidazole polypropylene ionomers
an ion content as low as 0.91 mol% can effectively improve the break strain to 815%. Among these various ionomers
the triethylamine polypropylene ionomers with 2.02 mol% and 2.97 mol% incorporation have good yield stress and break strain simultaneously. Furthermore
the type of the counter ion also has an impact on the yield strength and fracture strength of polypropylene ionomers
of which for the 6.47 mol% ion content
the
N
-methylimidazole polypropylene ionomer possessing Ⅰ-anions has the highest yield and fracture strength among those with other counter ions (Tf
2
N
-
BF
4
-
and PF
6
-
).
离子交联聚丙烯反应中间体反离子热稳定性亲水性能机械性能
Polypropylene ionomerReaction intermediateCounter ionThermal stabilityHydrophilic propertyMechanical property
U H Choi , L R Middleton , M Soccio , C F Buitrago , B S Aitken , H Masser , K B Wagener , K I Winey , J Runt . Macromolecules , 2015 . 48 19 - 30.
B P Grady . Polym Eng Sci , 2008 . 48 1029 - 1051 . DOI:10.1002/(ISSN)1548-2634http://doi.org/10.1002/(ISSN)1548-2634.
A Eisenberg , J S Kim , M Ratner . Phys Today , 2008 . 51 1023 - 1032.
N J Robertson , H A Kostalik , T J Clark , P F Mutolo , H D Abruña , G W Coates . J Am Chem Soc , 2010 . 132 3400 - 3404 . DOI:10.1021/ja908638dhttp://doi.org/10.1021/ja908638d.
J Healy , C Hayden , T Xie , K Olson , R Waldo , M Brundage , H Gasteiger , J Abbott . Fuel Cells , 2005 . 5 302 - 308 . DOI:10.1002/(ISSN)1615-6854http://doi.org/10.1002/(ISSN)1615-6854.
G Gebel . Polymer , 2000 . 41 5829 - 5838 . DOI:10.1016/S0032-3861(99)00770-3http://doi.org/10.1016/S0032-3861(99)00770-3.
A V Kabanov , T K Bronich , V A Kabanov , K Yu , A Eisenberg . J Am Chem Soc , 1998 . 120 9941 - 9942 . DOI:10.1021/ja981922thttp://doi.org/10.1021/ja981922t.
M S Wilson , J A Valerio , S Gottesfeld . Electrochim Acta , 1995 . 40 355 - 363 . DOI:10.1016/0013-4686(94)00272-3http://doi.org/10.1016/0013-4686(94)00272-3.
G Tsagaropoulos , A Eisenburg . Macromolecules , 1995 . 28 396 - 398 . DOI:10.1021/ma00105a059http://doi.org/10.1021/ma00105a059.
A Eisenberg , B Hird , R B Moore . Macromolecules , 1990 . 23 4098 - 4107 . DOI:10.1021/ma00220a012http://doi.org/10.1021/ma00220a012.
D J Yarusso , S L Cooper . Macromolecules , 1983 . 16 1871 - 1880 . DOI:10.1021/ma00246a013http://doi.org/10.1021/ma00246a013.
B S Garvey , A E Juve , D E Sauser . Ind Eng Chem , 2002 . 33 602 - 606.
V Maroušek , P Svoboda , J Králišek . Macromol Mater Eng , 1990 . 178 85 - 93.
S M Martin , A E Laurence . Ind Eng Chem , 1943 . 35 986 - 991 . DOI:10.1021/ie50405a011http://doi.org/10.1021/ie50405a011.
A E Juve , B S Garvey . Ind Eng Chem , 1942 . 34 1316 - 1319 . DOI:10.1021/ie50395a014http://doi.org/10.1021/ie50395a014.
T J Clark , N J Robertson , Iv H A Kostalik , E B Lobkovsky , P F Mutolo , H D Abruña , G W Coates . J Am Chem Soc , 2009 . 131 12888 - 12889 . DOI:10.1021/ja905242rhttp://doi.org/10.1021/ja905242r.
K Y Jin , L H Mok , P O Ok . Polym Eng Sci , 1995 . 35 1652 - 1657 . DOI:10.1002/(ISSN)1548-2634http://doi.org/10.1002/(ISSN)1548-2634.
E H Sander , H M Soo . J Food Sci , 1978 . 43 1519 - 1523 . DOI:10.1111/jfds.1978.43.issue-5http://doi.org/10.1111/jfds.1978.43.issue-5.
B S Aitken , C F Buitrago , J D Heffley , M Lee , H W Gibson , K I Winey , K B Wagener . Macromolecules , 2012 . 45 681 - 687 . DOI:10.1021/ma202304shttp://doi.org/10.1021/ma202304s.
M E Seitz , C D Chan , K L Opper , T W Baughman , K B Wagener , K I Winey . J Am Chem Soc , 2010 . 132 8165 - 8174 . DOI:10.1021/ja101991dhttp://doi.org/10.1021/ja101991d.
T W Baughman , C D Chan , K I Winey , K B Wagener . Macromolecules , 2007 . 40 6564 - 6571 . DOI:10.1021/ma070841rhttp://doi.org/10.1021/ma070841r.
M Zhang , H K Kim , E Chalkova , F Mark , S N Lvov , T C M Chung . Macromolecules , 2011 . 44 5937 - 5946 . DOI:10.1021/ma200836dhttp://doi.org/10.1021/ma200836d.
H A Kostalik , T J Clark , N J Robertson , P F Mutolo , J M Longo , H D Abruna , G W Coates . Macromolecules , 2010 . 43 7147 - 7150 . DOI:10.1021/ma101172ahttp://doi.org/10.1021/ma101172a.
P Xiang , Z Ye . Macromolecules , 2015 . 48 6096 - 6107 . DOI:10.1021/acs.macromol.5b01224http://doi.org/10.1021/acs.macromol.5b01224.
R A Weiss , P K Agarwal . J Appl Polym Sci , 1981 . 26 449 - 462 . DOI:10.1002/app.1981.070260207http://doi.org/10.1002/app.1981.070260207.
J P Dassaud , B Gallot , A Guyot , R Spitz , J P Beautemps , C Williams , C Bourgaux , A Eisenberg . Polym Adv Technol , 1994 . 5 79 - 89 . DOI:10.1002/pat.1994.220050201http://doi.org/10.1002/pat.1994.220050201.
L M Landoll , D S Breslow . J Polym Sci, Part B:Polym Chem , 1989 . 27 2189 - 2201.
M Zhang , X Yuan , L Wang , T C M Chung , T Huang , W deGroot . Macromolecules , 2014 . 47 571 - 581 . DOI:10.1021/ma402328khttp://doi.org/10.1021/ma402328k.
W Stumm . Macromolecules , 2013 . 46 5455 - 5463 . DOI:10.1021/ma4008658http://doi.org/10.1021/ma4008658.
A Nakamura , S Ito , K Nozaki . Chem Rev , 2009 . 109 5215 - 5244 . DOI:10.1021/cr900079rhttp://doi.org/10.1021/cr900079r.
T C Chung . J Organomet Chem , 2005 . 690 6292 - 6299 . DOI:10.1016/j.jorganchem.2005.04.031http://doi.org/10.1016/j.jorganchem.2005.04.031.
N K Boaen , M A Hillmyer . Chem Soc Rev , 2005 . 34 267 - 275 . DOI:10.1039/b311405hhttp://doi.org/10.1039/b311405h.
S D Ittel , L K Johnson , M Brookhart . Chem Rev , 2000 . 100 1169 - 1204 . DOI:10.1021/cr9804644http://doi.org/10.1021/cr9804644.
G W Coates . ChemInform , 2000 . 100 1223 - 1252.
S. Lisa , N Boffa , M Bruce . Chem Rev , 2000 . 100 1479 - 1494 . DOI:10.1021/cr990251uhttp://doi.org/10.1021/cr990251u.
X Wang , Y Wang , X Shi , J Liu , C Chen , Y Li . Macromolecules , 2014 . 47 552 - 559 . DOI:10.1021/ma4022696http://doi.org/10.1021/ma4022696.
X Y Wang , Y Y Long , Y X Wang , Y S Li . J Polym Sci, Part B:Polym Chem , 2014 . 52 3421 - 3428 . DOI:10.1002/pola.v52.23http://doi.org/10.1002/pola.v52.23.
A Narayanan , K Bauri , B Ruidas , G Pradhan , S Banerjee , P De . Langmuir , 2014 . 30 13430 - 13437 . DOI:10.1021/la503452fhttp://doi.org/10.1021/la503452f.
S R Bagrodia , G L Wilkes , J P Kennedy . J Appl Polym Sci , 2010 . 30 2179 - 2193.
S M T Sadeghi . Iran J Chem Chem Eng , 2006 . 25 11 - 23.
D Chu , D Gervasio , M Razaq , E B Yeager . J Appl Electrochem , 1990 . 20 157 - 162 . DOI:10.1007/BF01012486http://doi.org/10.1007/BF01012486.
0
Views
17
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution