浏览全部资源
扫码关注微信
1.江苏省先进高分子材料设计及应用重点实验室 苏州大学材料化学与化工学部 苏州 215123
2.中国科学院化学研究所 工程塑料院重点实验室 北京分子科学国家实验室 北京 100190
Published:20 November 2017,
Received:13 March 2017,
Revised:14 April 2017,
扫 描 看 全 文
Yu-dan Shui, Yun-lan Su, Wei-wei Zhao, Yuan-li Cai, Du-jin Wang. Efficient and Controllable Synthesis of Grafting Bimodal Polymer Brushes on Nanoparticles. [J]. Acta Polymerica Sinica (11):1773-1780(2017)
Yu-dan Shui, Yun-lan Su, Wei-wei Zhao, Yuan-li Cai, Du-jin Wang. Efficient and Controllable Synthesis of Grafting Bimodal Polymer Brushes on Nanoparticles. [J]. Acta Polymerica Sinica (11):1773-1780(2017) DOI: 10.11777/j.issn1000-3304.2017.17046.
在混合溶剂中通过"grafting to"的方法将2种分子量不同的聚乙二醇单甲醚(MPEG
M
w
=750,4000)接枝到氨基修饰的Stöber法二氧化硅(SiO
2
-NH
2
)表面,制备双分布纳米接枝复合物.采用二步法,先将带环氧端基的低分子量聚乙二醇单甲醚(MPEG-EO)与SiO
2
-NH
2
在甲苯溶剂中充分反应后,与高分子量的MPEG-EO在甲苯和正癸烷的混合溶剂中使用相同的反应条件和后处理方法,能便捷制备出具有双分布接枝的纳米复合物.在接枝反应体系中,分子链的链段尺寸和接枝密度之间存在着密切关系.一定的范围内,接枝密度随链段尺寸减小而增大.通过改变混合溶剂比例来调控接枝链段的尺寸,可以很好控制聚合物的接枝密度.在双分布接枝的纳米复合物中,低分子量的接枝密度为0.85 chains/nm
2
,高分子量的接枝密度能达到0.40 chains/nm
2
,体现出了简单、高效、可控的特点,与聚环氧乙烷(PEO)共混后分散良好,对于制备出均匀分散的纳米复合材料起到了一定的指导作用.
We report here a facile and controllable synthesis of bimodal poly(ethylene glycol) (PEG) brushes grafted on silica nanoparticles (NPs) through mixture of good and poor solvents. Methoxypolyethylene glycol (MPEG) (
M
w
=750 and 4000) was modified in a control manner to prepare epoxide terminated PEG (MPEG-EO). The silica
with well-defined siloxane structure and modified by amino groups
was prepared through silanization coupling reaction with
N
-(2-aminoethy)-3-aminopropylmethyldimethoxysilane (AMDS). A two step method was used to get the bimodal polymer brushes grafted onto the nanoparticles (NPs). MPEG-EO with low molecular weights (
M
w
=750) was first coupled to modified silica in toluene at 110 ℃
the obtained sample was again reacted with MPEG-EO with high molecular weight (
M
w
=4000) in a mixed solvent of
n
-decane/toluene. Based on the thermogravimetric (TGA) results
more poor solvent (
n
-decane) in the solvent mixture resulted in a higher grafting density for MPEG-EO. The grafting density could be controlled easily by changing the composition of the mixed solvent
which was different from the traditional ways to control the grafting density through changing temperature
time and concentration of the coupling agent. The grafting density was found to be about 0.85 and 0.4 chains/nm
2
for MPEG-EO with molecular weight of 750 and 4000
respectively. These values are extremely high compared to those previously reported. This high grafting density is explained by the decreased chain dimension of PEG in the presence of poor solvent
which lowers the excluded volume interaction and subsequent inter-chain repulsion
allowing a better packing at the silica surface
and the energy barrier of the surface coupling chemistry is effectively overcomed. This technique
efficiently controllable and facile
provides theoretical guidance for the development of silica NPs and may promote tethering polymer to silica NPs based on the connection between the chain dimension and the grafting density.
Stöber法二氧化硅聚乙二醇混合溶剂双分布接枝刷
Stöber silica particlesPoly (ethylene glycol)Mixed solventBimodal brush
D Estupiñán , M B Bannwarth , S E Mylon , K Landfester , R Munoz-Espi , D Crespy . Nanoscale , 2016 . 8 3019 - 3030 . DOI:10.1039/C5NR08258Ghttp://doi.org/10.1039/C5NR08258G.
D W Janes , J F Moll , S E Harton , C J Durning . Macromolecules , 2011 . 44 4920 - 4927 . DOI:10.1021/ma200205jhttp://doi.org/10.1021/ma200205j.
P J Costanzo , F L Beyer . Chem Mater , 2007 . 19 6168 - 6173 . DOI:10.1021/cm701864rhttp://doi.org/10.1021/cm701864r.
P Agarwal , H B Qi , L A Archer . Nano Lett , 2010 . 10 111 - 115 . DOI:10.1021/nl9029847http://doi.org/10.1021/nl9029847.
C H Liu , C Y Pan . Polymer , 2007 . 48 3679 - 3685 . DOI:10.1016/j.polymer.2007.04.055http://doi.org/10.1016/j.polymer.2007.04.055.
P S Chinthamanipeta , S Kobukata , H Nakata , D A Shipp . Polymer , 2008 . 49 5636 - 5642 . DOI:10.1016/j.polymer.2008.10.018http://doi.org/10.1016/j.polymer.2008.10.018.
S H Qin , D Q Qin , W T Ford , D E Resasco , J E Herrera . Macromolecules , 2004 . 37 752 - 757 . DOI:10.1021/ma035214qhttp://doi.org/10.1021/ma035214q.
F Wu , B Zhang , W Yang , Z Y Liu , M B Yang . Polymer , 2014 . 55 5760 - 5772 . DOI:10.1016/j.polymer.2014.08.070http://doi.org/10.1016/j.polymer.2014.08.070.
L D Unsworth , H Sheardown , J L Brash . Langmuir , 2008 . 24 1924 - 1929 . DOI:10.1021/la702310thttp://doi.org/10.1021/la702310t.
P Hamilton-Brown , T Gengenbach , H J Griesser , L Meagher . Langmuir , 2009 . 25 9149 - 9156 . DOI:10.1021/la900703ehttp://doi.org/10.1021/la900703e.
P Kingshott , S McArthur , H Thissen , D G Castner , H J Griesser . Biomaterials , 2002 . 23 4775 - 4785 . DOI:10.1016/S0142-9612(02)00228-4http://doi.org/10.1016/S0142-9612(02)00228-4.
M J Zhu , M Z Lerum , W Chen . Langmuir , 2012 . 28 416 - 423 . DOI:10.1021/la203638ghttp://doi.org/10.1021/la203638g.
Marruecos D Faulon , M Kastantin , D K Schwartz , J L Kaar . Biomacromolecules , 2016 . 17 1017 - 1025 . DOI:10.1021/acs.biomac.5b01657http://doi.org/10.1021/acs.biomac.5b01657.
L Arcot , R Ogaki , S Zhang , R L Meyer , P Kingshott . Appl Surf Sci , 2015 . 341 134 - 141 . DOI:10.1016/j.apsusc.2015.02.156http://doi.org/10.1016/j.apsusc.2015.02.156.
A Rungta , B Natarajan , T Neely , D Dukes , L S Schadler , B C Benicewicz . Macromolecules , 2012 . 45 9303 - 9311 . DOI:10.1021/ma3018876http://doi.org/10.1021/ma3018876.
H Q Huang , L S Penn . Macromolecules , 2005 . 38 4837 - 4843 . DOI:10.1021/ma0501444http://doi.org/10.1021/ma0501444.
S K Kumar , N Jouault , B Benicewicz , T Neely . Macromolecules , 2013 . 46 3199 - 3214 . DOI:10.1021/ma4001385http://doi.org/10.1021/ma4001385.
J Canadell , H Goossens , B Klumperman . Macromolecules , 2011 . 44 2536 - 2541 . DOI:10.1021/ma2001492http://doi.org/10.1021/ma2001492.
A L Li , H Shen , H H Ren , C Wang , D C Wu , R A Martin , D Qiu . J Mater Chem B , 2015 . 3 1379 - 1390 . DOI:10.1039/C4TB01776Ehttp://doi.org/10.1039/C4TB01776E.
A Beganskienė , V SirutkaAitis , M Kurtinaitienė , R Juškėnas , A Kareiva . Mater Sci , 2004 . 10 287 - 290 . http://d.wanfangdata.com.cn/Periodical/jsjxb201411015.
K Chrissopoulou , K S Andrikopoulos , S Fotiadou , S Bollas , C Karageorgaki , D Christofilos , G A Voyiatzis , S H Anastasiadis . Macromolecules , 2011 . 44 9710 - 9722 . DOI:10.1021/ma201711rhttp://doi.org/10.1021/ma201711r.
T R Gengenbach , H J Griesser . J Polym Sci, Part A:Polym Chem , 1999 . 37 2191 - 2206 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
G X Chen , H S Kim , B H Park , J S Yoon . J Phys Chem B , 2005 . 109 22237 - 22243 . DOI:10.1021/jp054768nhttp://doi.org/10.1021/jp054768n.
D Zhao , Nicola M Di , M M Khani , J Jestin , B C Benicewicz , S K Kumar . ACS Macro Lett , 2016 . 5 790 - 795 . DOI:10.1021/acsmacrolett.6b00349http://doi.org/10.1021/acsmacrolett.6b00349.
0
Views
11
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution