-三嗪三酮(EP2)与二氧化碳和环氧丙烷三元调聚合.在相同条件下,EP1使催化活性显著升高至624 h
-1
,但对产物分子量和玻璃化转变温度(
T
g
)影响不明显;EP2的加入对活性的影响不明显,但可使聚碳酸酯的分子量增大至
M
n
=1.97×10
4
,PDI=5.07,产物的
T
g
升至45℃.
Abstract
A new type of the SalenCo
(Ⅲ)
with CN as the co-ligand is developed to catalyze the copolymerization of CO
2
with propylene oxide (PO) to afford poly(propylene carbonate) (PPC). The co-ligand (X) is the initiating group during the reaction and becomes the site at which the growing polymer chain is proposed to propagate. The copolymerization rate
selectivity of the polymer to the cyclic carbonate
stereoselectivity
and regioselectivity of the polycarbonate exhibit a pronounced dependence on the nature of the axial ligand. Compared with the SalenCo
(Ⅲ)
Cl and SalenCo
(Ⅲ)
Br catalysts
the PPC obtained by SalenCo
(Ⅲ)
CN catalyst at 25℃ presented 98% head-to-tail (HT) connectivity
and without head-to-head linkage. Further increasing the reaction temperature from 25℃ to 75℃
the polymerization activity over SalenCo
(Ⅲ)
CN catalysts increased
and the product still maintained a high selectivity for carbonate linkages. The PPC achieved using the SalenCo
(Ⅲ)
CN/PPNCl (PPNCl=bis(triphenylphosphino)iminium chloride) catalyst systems at 50℃ within 2 h with TOF=379 mol PO·mol
-1
Co·h
-1
was highly regioregular (HT up to 95%) and had carbonate linkages of up to 99% with a narrow molecular weight distribution (MWD). The SalenCo
(Ⅲ)
CN catalyst showed good stability and polymer chain control ability even at 75℃. This novel catalyst efficiently terpolymerized CO
2
PO
and two other kinds of epoxide monomers. When the quantity of the third epoxide was added gradually
the MWD of the generated polymers was broader
indicating the epoxide was incorporated into the PPC chain successfully. The third epoxide monomer not only acted as an interlinkage in the terpolymerization of CO
2
and PO
which increased the MW of the resultant terpolymer to a value that increased the glass transition temperature (
T
g
)
but also strongly influenced the productivity of PPC and the selectivity. Introducing the dicyclopentadiene dioxide (EP1) could greatly increase the activity of the catalyst system to TOF=624 h
-1
with a slight effect on
T
g
. For the case of 1
3
5-triglycidyl isocyanurate (EP2)
it increased MW of the resultant copolymer and the
S Inoue , H Koinuma , T Tsuruta . Die Makromol Chem , 1969 . 130 ( 1 ): 210 - 220 . DOI:10.1002/macp.1969.021300112http://doi.org/10.1002/macp.1969.021300112.
Z Qin , C M Thomas , S Lee , G W Coates . Angew Chem Int Ed , 2003 . 42 ( 44 ): 5484 - 5487 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
M Tokunaga , J F Larrow , F Kakiuchi , E N Jacobsen . Science , 1997 . 277 ( 5328 ): 936 - 938 . DOI:10.1126/science.277.5328.936http://doi.org/10.1126/science.277.5328.936.
Y Tao , X Wang , X Chen , X Zhao , F Wang . J Polym Sci, Part A:Polym Chem , 2008 . 46 ( 13 ): 4451 - 4458 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
H Li , Y Niu . React Funct Polym , 2011 . 71 ( 2 ): 121 - 125 . DOI:10.1016/j.reactfunctpolym.2010.11.026http://doi.org/10.1016/j.reactfunctpolym.2010.11.026.
H C Li , Y S Niu . Polym Adv Technol , 2016 . 27 ( 9 ): 1191 - 1194 . DOI:10.1002/pat.v27.9http://doi.org/10.1002/pat.v27.9.
D J Darensbourg , J L Rodgers , R M Mackiewicz , A L Phelps . Catal Today , 2004 . 98 ( 4 ): 485 - 492 . DOI:10.1016/j.cattod.2004.09.017http://doi.org/10.1016/j.cattod.2004.09.017.
D J Darensbourg , J C Yarbrough , Ortiz A Cesar , C C Fang . J Am Chem Soc , 2003 . 125 ( 25 ): 7586 - 7591 . DOI:10.1021/ja034863ehttp://doi.org/10.1021/ja034863e.
R Eberhardt , M Allmendinger , B Rieger . Macromol Rapid Commun , 2003 . 24 ( 2 ): 194 - 196 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
S D Allen , D R Moore , E B L And , G W Coates . J Am Chem Soc , 2002 . 124 ( 48 ): 14284 - 14285 . DOI:10.1021/ja028071ghttp://doi.org/10.1021/ja028071g.
X B Lu , B Liang , Y J Zhang , Y Z Tian , Y M Wang , C X Bai , H Wang , R Zhang . J Am Chem Soc , 2004 . 126 ( 12 ): 3732 - 3733 . DOI:10.1021/ja049734shttp://doi.org/10.1021/ja049734s.
C T Cohen , Chu A Tony , G W Coates . J Am Chem Soc , 2005 . 127 ( 31 ): 10869 - 10878 . DOI:10.1021/ja051744lhttp://doi.org/10.1021/ja051744l.
Jian Zhou , Youhua Tao , Xianhong Wang , Xiaojiang Zhao , Fosong Wang . Acta Polymerica Sinica , 2007 . ( 10 ): 913 - 917 . DOI:10.3321/j.issn:1000-3304.2007.10.004http://doi.org/10.3321/j.issn:1000-3304.2007.10.004http://www.gfzxb.org/CN/abstract/abstract11095.shtml.
D J Darensbourg , G P Wu . Angew Chem Ind Ed , 2013 . 52 ( 40 ): 10602 - 10606 . DOI:10.1002/anie.201304778http://doi.org/10.1002/anie.201304778.
X Li , R L Duan , X Pang , B Gao , X H Wang , X S Chen . Appl Catal B , 2016 . 182 580 - 586 . DOI:10.1016/j.apcatb.2015.10.019http://doi.org/10.1016/j.apcatb.2015.10.019.
X B Lu , L Shi , Y M Wang , R Zhang , Y J Zhang , X J Peng , Z C Zhang , B Li . J Am Chem Soc , 2015 . 128 ( 128 ): 1664 - 1674 . http://www.ncbi.nlm.nih.gov/pubmed/16448140.
G P Wu , S H Wei , W M Ren , X B Lu , T Q Xu , D J Darensbourg . J Am Chem Soc , 2011 . 133 ( 38 ): 15191 - 15199 . DOI:10.1021/ja206425jhttp://doi.org/10.1021/ja206425j.
G P Wu , S H Wei , X B Lu , W M Ren , D J Darensbourg . Macromolecules , 2010 . 43 ( 21 ): 9202 - 9204 . DOI:10.1021/ma1021456http://doi.org/10.1021/ma1021456.
X B Lu , W M Ren , G P Wu . Acc Chem Res , 2012 . 45 ( 10 ): 1721 - 1735 . DOI:10.1021/ar300035zhttp://doi.org/10.1021/ar300035z.
S E Schaus , B D Brandes , J F Larrow , M Tokunaga , K B Hansen , A E Gould , M E Furrow , E N Jacobsen . J Am Chem Soc , 2002 . 124 ( 7 ): 1307 - 1315 . DOI:10.1021/ja016737lhttp://doi.org/10.1021/ja016737l.
I K Lee , Y H Ju , C Cao , D W Park , C S Ha , I Kim . Catal Today , 2009 . 148 ( 3 ): 389 - 397.
X B Lu , Y Wang . Angew Chem Int Ed , 2004 . 43 ( 27 ): 3574 - 3577 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.