Wei-na Fang, Chun-hai Fan, Hua-jie Liu. Effect of pH on the Stability of DNA Origami. [J]. Acta Polymerica Sinica (12):1993-2000(2017)
DOI:
Wei-na Fang, Chun-hai Fan, Hua-jie Liu. Effect of pH on the Stability of DNA Origami. [J]. Acta Polymerica Sinica (12):1993-2000(2017) DOI: 10.11777/j.issn1000-3304.2017.17064.
The response of DNA origami nanostructures to pH is systematically investigated from two aspects in this work. At first
self-assembly of DNA origami triangle in different pH buffer was tested by putting M13 scaffold and staple strands into a series of sodium citrate buffer (10 mmol/L with 12.5 mmol/L Mg
2+
)
the as-prepared sample was characterized by AFM. The formation of the origami structure was affected by pH and the structure was observed only in the pH range of 6-9. Tolerance of DNA origami to pH in the external environment was investigated by immersing them (pH=8) into acidic and basic solutions for 2 h at room temperature
followed by characterization of the samples by AFM and 0.5% agarose gel respectively. The AFM results showed that the DNA origami triangle maintained the original structure at pH range of 5-10
and the structure was broken at higher or lower pH. The agarose gel suggested that the most stable state of DNA origami triangle was in pH range of 7-8
where the intensity and mobility of the sample band remained the same. Compared with the origami self-assembled in different pH buffers
the pre-prepared origami showed better resistance to acidic and alkali environments. In order to test the long time-stability of DNA origami
pH value of the prepared triangle origami was adjusted in the range of 5-10 and the reaction time was extended to 12 h. AFM test results indicated that the DNA origami could maintain its original structure for at least 12 h. Another common origami nanostructure was also tested; like origami triangle
rectangle structure showed a similar pH tolerance which could keep the stability at pH range of 5-10 for at least 12 h. The long time pH stability experiment of the triangle and the rectangle structures indicated that the origami structure based on M13 owned a relatively high pH tolerance. Based on the above results
possible mechanism of pH effect on DNA origami stability was also proposed. In the process of the origami preparation
excess H
+
or OH
-
will affect the formation of the hydrogen bond thus affecting the hybridization of DNA double helixes. In the pH tolerance experiment
excessive H
+
or OH
-
will attack the formed hydrogen bonds and make the origami structure floppy. In both aspects
more H
+
or OH
-
will undermine the primary structure of DNA
and eventually affect the formation and stability of DNA origami structures.
关键词
DNA折纸自组装稳定性pH
Keywords
DNA origamiSelf-assemblyStabilitypH
references
M R Jones , N C Seeman , C A Mirkin . Science , 2015 . 347 1260901 DOI:10.1126/science.1260901http://doi.org/10.1126/science.1260901.
N C Seeman . Nature , 2003 . 421 427 - 431 . DOI:10.1038/nature01406http://doi.org/10.1038/nature01406.
C D Mao , T H LaBean , J H Reif , N C Seeman . Nature , 2000 . 407 493 - 496 . DOI:10.1038/35035038http://doi.org/10.1038/35035038.
H J Liu , Y Xu , F Y Li , Y Yang , W X Wang , Y L Song , D S Liu . Angew Chem Int Ed , 2007 . 2515 - 2517.
C Li , M J Rowland , Y Shao , T Y Cao , C Chen , H Y Jia , X Zhou , Z Q Yang , O A Scherman , D S Liu . Adv Mater , 2015 . 27 3298 - 3304 . DOI:10.1002/adma.v27.21http://doi.org/10.1002/adma.v27.21.
J B Wang , J Chao , H J Liu , S Su , L H Wang , W Huang , I Willner , C C Fan . Angew Chem Int Ed , 2017 . 56 2171 - 2175 . DOI:10.1002/anie.201610125http://doi.org/10.1002/anie.201610125.
P W K Rothemund . Nature , 2006 . 440 297 - 302 . DOI:10.1038/nature04586http://doi.org/10.1038/nature04586.
S M Douglas , I Bachelet , G M Church . Science , 2012 . 335 831 - 834 . DOI:10.1126/science.1214081http://doi.org/10.1126/science.1214081.
S D Perrault , W M Shih . ACS Nano , 2014 . 8 5132 - 5140 . DOI:10.1021/nn5011914http://doi.org/10.1021/nn5011914.
W Sun , E Boulais , Y Hakobyan , W L Wang , A Guan , M Bathe , P Yin . Science , 2014 . 346 1258361 DOI:10.1126/science.1258361http://doi.org/10.1126/science.1258361.
Y N Zhang , J Chao , H J Liu , F Wang , S Su , B Liu , L Zhang , J Y Shi , L H Wang , W Huang , C C Fan . Angew Chem Int Ed , 2016 . 128 8168 - 8172 . DOI:10.1002/ange.201512022http://doi.org/10.1002/ange.201512022.
G B Yao , J Li , J Chao , H Pei , H J Liu , Y Zhao , J Y Shi , Q Huang , L H Wang , W Huang , C C Fan . Angew Chem Int Ed , 2015 . 127 3009 - 3012 . DOI:10.1002/ange.v127.10http://doi.org/10.1002/ange.v127.10.
Q Mei , X Wei , F Su , Y Liu , C Youngbull , R Johnson , S Lindsay , H Yan , D Meldrum . Nano Lett , 2011 . 11 1477 - 1482 . DOI:10.1021/nl1040836http://doi.org/10.1021/nl1040836.
J Hahn , S F J Wickham , W M Shih , S D Perrault . ACS Nano , 2014 . 8 8765 - 8775 . DOI:10.1021/nn503513phttp://doi.org/10.1021/nn503513p.
H Kim , S P Surwade , A Powell , C O'Donnell , H Liu . Chem Mater , 2014 . 26 5265 - 5273 . DOI:10.1021/cm5019663http://doi.org/10.1021/cm5019663.
C T Diagne , C Brun , D Gasparutto , X Baillin , R Tiron . ACS Nano , 2016 . 10 6458 - 6463 . DOI:10.1021/acsnano.6b00413http://doi.org/10.1021/acsnano.6b00413.
D M Wang , Z R Da , B H Zhang , M A Isbell , Y C Dong , X Zhou , H J Liu , J Y Y Heng , Z Q Yang . RSC Adv , 2015 . 5 58734 - 58737 . DOI:10.1039/C5RA12159Khttp://doi.org/10.1039/C5RA12159K.
A Chopra , S Krishnan , F C Simmel . Nano Lett , 2016 . 16 6683 - 6690 . DOI:10.1021/acs.nanolett.6b03586http://doi.org/10.1021/acs.nanolett.6b03586.
J K Kiviaho , V Linko , A Ora , T Tiainen , E Jarvihaavisto , J Mikkila , H Tenhu , Nonappa , M A Kostiainen . Nanoscale , 2016 . 8 11674 - 11680 . DOI:10.1039/C5NR08355Ahttp://doi.org/10.1039/C5NR08355A.
Y Yang , J Wang , H Shigematsu , W Xu , W M Shih , J E Rothman , C Lin . Nat Chem , 2016 . 8 476 - 483 . DOI:10.1038/nchem.2472http://doi.org/10.1038/nchem.2472.
M J Urban , P K Dutta , P F Wang , X Y Duan , X B Shen , B Q Ding , Y G Ke , N Liu . J Am Chem Soc , 2016 . 138 5495 - 5498 . DOI:10.1021/jacs.6b00958http://doi.org/10.1021/jacs.6b00958.
Y M Fu , D D Zeng , J Chao , Y Q Jin , Z Zhang , H J Liu , D Li , H W Ma , Q Huang , K V Gothelf , C C Fan . J Am Chem Soc , 2013 . 135 696 - 702 . DOI:10.1021/ja3076692http://doi.org/10.1021/ja3076692.
J B Knudsen , L Liu , Kodal A L Bank , M Madsen , Q Li , J Song , J B Woehrstein , S F J Wickham , M T Strauss , F Schueder , J Vinther , A Krissanaprasit , D Gudnason , A A A Smith , R Ogaki , A N Zelikin , F Besenbacher , V Birkedal , P Yin , W M Shih , R Jungmann , M Dong , K V Gothelf . Nat Nano , 2015 . 10 892 - 898 . DOI:10.1038/nnano.2015.190http://doi.org/10.1038/nnano.2015.190.
C Zhou , Y Y Zhang , Y C Dong , F Wu , D M Wang , L Xin , D S Liu . Adv Mater , 2016 . 28 9819 - 9823 . DOI:10.1002/adma.201603210http://doi.org/10.1002/adma.201603210.
N Wu , I Willner . Nano Lett , 2016 . 16 6650 - 6655 . DOI:10.1021/acs.nanolett.6b03418http://doi.org/10.1021/acs.nanolett.6b03418.
Structured Liquids: Design, Construction and Applications
Synthesis and Self-assembly of Asymmetric Molecular Brushes with Azobenzene-containing Side Chains
Preparation and Properties of Dopamine Modified Polydiacetylene Composite Thermochromic Material
Synthesis and Self-assembly Behavior of Porphyrin-based Polypeptides
Design and Preparation of Hydrophobic Silica Particles and Study on Modified Epoxy Resin
Related Author
No data
Related Institution
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology
Department of Polymer Science and Engineering, University of Massachusetts, Amherst
Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology
College of Textile Science and Engineering, Jiangnan University
School of Materials Science and Engineering, East China University of Science and Technology