浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学院 长春 130012
Published:2017-7,
Received:31 March 2017,
Revised:30 April 2017,
扫 描 看 全 文
Si-yu Lu, Bai Yang. One Step Synthesis of Efficient Orange-red Emissive Polymer Carbon Nanodots Displaying Unexpect Two Photon Fluorescence. [J]. Acta Polymerica Sinica (7):1200-1206(2017)
Si-yu Lu, Bai Yang. One Step Synthesis of Efficient Orange-red Emissive Polymer Carbon Nanodots Displaying Unexpect Two Photon Fluorescence. [J]. Acta Polymerica Sinica (7):1200-1206(2017) DOI: 10.11777/j.issn1000-3304.2017.17070.
聚合物碳纳米点是近年来新兴的一种荧光纳米探针,具有较低的生物毒性、良好的水溶性、较高的量子产率、优异的光/化学稳定性以及良好的生物相容性.目前所制备的碳点大都表现出蓝、绿色荧光发射.为实现碳点长波荧光发射,扩大其在生物标记与成像及光电显示方面的应用,本文采用水相一步法交联聚合反应制备了具有橙红荧光发射性质且具有双光子效应的聚合物碳点,发射波长为604 nm,荧光量子产率达到30.64%,并且应用在生物活体成像中.
Polymer carbon nano dots (PCNDs) have recently emerged as important nanomaterials. Although they have many attractive luminescence properties
most of them show intense emissions at short blue or green wavelengths. In this work
we designed a facile
high-output method for fabricating orange-red emissive PCNDs (centered at 604 nm
PLQY 30.64%) with two-photon fluorescence. The PCNDs were no crystal lattice polymer dots with an average diameter of 20 nm
which were detected by TEM and HRTEM. And the XPS findings indicated that C=O and graphitic N play important roles in the red emission. UV-Vis absorption spectrum of PCNDs exhibited several absorption maxima/bands at 277
386
541 and 575 nm (though the absorption at 541 and 575 nm was very weak)
and a maximum emission wavelength of 600 nm with excitation-wavelengthindependent PL. At lower temperatures
dopamine and o-phenylenediamine underwent a dehydration reaction to form intertwined polymer chains with benzene rings and heterocycles in the backbone. Inside the PCNDs
large molecules or crosslinked polymer chains were dominant rather than carbonized structures. The PL mechanisms of the PCNDs were mainly molecule state emission or crosslink-enhanced emission. Moreover
the QY of the PCNDs was 30.64%
which was the highest value recorded for red emissive CNDs. To assess the prospects of the PCNDs as a bioimaging material
KB human oral squamous carcinoma cells were used to evaluate the cytocompatibility of the PCNDs. The cell viability of the PCNDs was determined by a methyl thiazole terazolium (MTT) assay. The MTT assays of cell viability studies suggested that the PCNDs demonstrated low cytotoxicity and were not found to pose any significant toxic effects. This result concluded that PCNDs can be used in a high concentration for imaging or other biomedical applications. Then
the luminescence stability of these PCNDs was examined by irradiating with a UV lamp for 8 h. The results turned out that almost no PL attenuation was observed. For bioimaging
PCNDs were subcutaneously injected into the back of a nude mouse
resulting in a strong fluorescence signal with good signal-to-noise ratio at excitation and emission wavelengths of 540 and 600 nm
respectively
which indicated a promising potential applicability
in vivo
imaging.
聚合物碳点荧光红色荧光双光子荧光生物成像
Polymer carbon nano dotsLuminescenceRed luminescenceTwo-photon fluorescenceBioimaging
S N Baker , G A Baker . . Angew Chem Int Ed , 2010 . 49 6726 DOI:10.1002/anie.200906623http://doi.org/10.1002/anie.200906623.
S Y Lim , W Shen , Z Gao . . Chem Soc Rev , 2015 . 44 362 - 381 . DOI:10.1039/C4CS00269Ehttp://doi.org/10.1039/C4CS00269E.
K Hola , Y Zhang , Y Wang , P E Giannelis , R Zboril , A L Rogach . . Nano Today , 2014 . 9 590 - 603 . DOI:10.1016/j.nantod.2014.09.004http://doi.org/10.1016/j.nantod.2014.09.004.
P Miao , K Han , Y Tang , B Wang , T Lin , W Cheng . . Nanoscale , 2015 . 7 1586 - 1595 . DOI:10.1039/C4NR05712Khttp://doi.org/10.1039/C4NR05712K.
H T Li , Z H Kang , Y Liu , S T Lee . . J Mater Chem , 2012 . 22 24230 - 24253 . DOI:10.1039/c2jm34690ghttp://doi.org/10.1039/c2jm34690g.
X T Zheng , A Ananthanarayanan , K Q Luo , P Chen . . Small , 2015 . 11 1620 - 1636 . DOI:10.1002/smll.v11.14http://doi.org/10.1002/smll.v11.14.
Y P Sun , B Zhou , Y Lin , W Wang , K A Fernando , P Pathak , M J Meziani , B A Harruff , X Wang , H Wang . . J Am Chem Soc , 2006 . 128 7756 - 7757 . DOI:10.1021/ja062677dhttp://doi.org/10.1021/ja062677d.
Q Lou , S Qu , P Jing , W Ji , D Li , J Cao , H Zhang , L Liu , J Zhao , D Shen . . Adv Mater , 2015 . 27 1389 - 1394 . DOI:10.1002/adma.201403635http://doi.org/10.1002/adma.201403635.
M Zheng , S Liu , J Li , D Qu , H Zhao , X Guan , X Hu , Z Xie , X Jing , Z Sun . . Adv Mater , 2014 . 26 3554 - 3560 . DOI:10.1002/adma.v26.21http://doi.org/10.1002/adma.v26.21.
C Ding , A Zhu , Y Tian . . Acc Chem Res , 2014 . 47 20 - 30 . DOI:10.1021/ar400023shttp://doi.org/10.1021/ar400023s.
B Kong , A Zhu , C Ding , X Zhao , B Li , Y Tian . . Adv Mater , 2012 . 24 5844 - 5848 . DOI:10.1002/adma.201202599http://doi.org/10.1002/adma.201202599.
J Wang , C F Wang , S Chen . . Angew Chem Int Ed , 2012 . 51 9297 - 9301 . DOI:10.1002/anie.201204381http://doi.org/10.1002/anie.201204381.
S Qu , X Wang , Q Lu , X Liu , L Wang . . Angew Chem Int Ed , 2012 . 51 12215 - 12218 . DOI:10.1002/anie.v51.49http://doi.org/10.1002/anie.v51.49.
J Tang , B Kong , H Wu , M Xu , Y Wang , Y Wang , D Zhao , G Zheng . . Adv Mater , 2013 . 25 6569 - 6574 . DOI:10.1002/adma.201303124http://doi.org/10.1002/adma.201303124.
S Zhu , Y Song , X Zhao , J Shao , J Zhang , B Yang . . Nano Res , 2015 . 8 355 - 381 . DOI:10.1007/s12274-014-0644-3http://doi.org/10.1007/s12274-014-0644-3.
W Li , Z Zhang , B Kong , S Feng , J Wang , L Wang , J Yang , F Zhang , P Wu , D Zhao . . Angew Chem Int Ed , 2013 . 52 8151 - 8155 . DOI:10.1002/anie.v52.31http://doi.org/10.1002/anie.v52.31.
J Tang , Y Zhang , B Kong , Y Wang , P Da , J Li , A A Elzatahry , D Zhao , X Gong , G Zheng . . Nano Lett , 2014 . 14 2702 - 2708 . DOI:10.1021/nl500608whttp://doi.org/10.1021/nl500608w.
A M Smith , M C Mancini , S Nie . . Nat Nanotechnol , 2009 . 4 710 - 711 . DOI:10.1038/nnano.2009.326http://doi.org/10.1038/nnano.2009.326.
J An , C M Shade , D A Chengelis-Czegan , S Petoud , N L Rosi . . J Am Chem Soc , 2011 . 133 1220 - 1223 . DOI:10.1021/ja109103thttp://doi.org/10.1021/ja109103t.
X Guo , C F Wang , Z Y Yu , L Chen , S Chen . . Chem Commun , 2012 . 48 2692 - 2694 . DOI:10.1039/c2cc17769bhttp://doi.org/10.1039/c2cc17769b.
C Sun , Y Zhang , K Sun , C Reckmeier , T Zhang , X Zhang , J Zhao , C Wu , W W Yu , A L Rogach . . Nanoscale , 2015 . 7 12045 - 12050 . DOI:10.1039/C5NR03014Ehttp://doi.org/10.1039/C5NR03014E.
M Sun , S Qu , Z Hao , W Ji , P Jing , H Zhang , L Zhang , J Zhao , D Shen . . Nanoscale , 2014 . 6 13076 - 13081 . DOI:10.1039/C4NR04034Ahttp://doi.org/10.1039/C4NR04034A.
Y Wang , S Kalytchuk , L Wang , O Zhovitiuk , K Cepe , R Zboril , A L Rogach . . Chem Commun , 2015 . 51 2950 - 2953 . DOI:10.1039/C4CC09589Hhttp://doi.org/10.1039/C4CC09589H.
S Lu , D Cong , S Zhu , X Zhao , John S Tse , S Meng , B Yang . . ACS Appl Mater Interfaces , 2016 . 8 4062 - 4068 . DOI:10.1021/acsami.5b11579http://doi.org/10.1021/acsami.5b11579.
M R Krames , O B Shchekin , R Muellwer-Mach , G O Mueller , L Zhou , G Harbers , M G Craford . . J Disp Technol , 2007 . 3 160 DOI:10.1109/JDT.2007.895339http://doi.org/10.1109/JDT.2007.895339.
X F Li , J D Budai , F Li , J Y Howe , J H Zhang , X J Wang , Z J Gu , C J Sun , R S Meltzer , Z W Pan . . Light:Sci Appl , 2013 . 2 ( 1 ): e50 DOI:10.1038/lsa.2013.6http://doi.org/10.1038/lsa.2013.6.
S Qu , D Zhou , D Li , W Y Ji , P T Jing , D Han , L Liu , H B Zeng , D Z Shen . . Adv Mater , 2016 . 28 3516 - 3521 . DOI:10.1002/adma.201504891http://doi.org/10.1002/adma.201504891.
K Jiang , S Sun , L Zhang , Y Lu , A Wu , C Cai , H Lin . . Angew Chem Int Ed , 2015 . 54 5360 - 5363 . DOI:10.1002/anie.201501193http://doi.org/10.1002/anie.201501193.
H Ding , S B Yu , J S Wei , H M Xiong . . ACS Nano , 2016 . 10 484 - 491 . DOI:10.1021/acsnano.5b05406http://doi.org/10.1021/acsnano.5b05406.
S Zhu , S Tang , J Zhang , B Yang . . Chem Commun , 2012 . 48 4527 - 4539 . DOI:10.1039/c2cc31201hhttp://doi.org/10.1039/c2cc31201h.
S Zhu , J Zhang , S Tang , C Qiao , L Wang , H Wang , X Liu , B Li , Y Li , W Yu , X Wang , H Sun , B Yang . . Adv Funct Mater , 2012 . 22 4732 - 4740 . DOI:10.1002/adfm.v22.22http://doi.org/10.1002/adfm.v22.22.
S Zhu , Q Meng , L Wang , J Zhang , Y Song , H Jing , K Zhang , H Sun , H Wang , B Yang . . Angew Chem Int Ed , 2013 . 52 3953 - 3957 . DOI:10.1002/anie.v52.14http://doi.org/10.1002/anie.v52.14.
S Lu , X Zhao , S Zhu , Y Song , B Yang . . Nanoscale , 2014 . 6 13939 - 13944 . DOI:10.1039/C4NR03965Chttp://doi.org/10.1039/C4NR03965C.
L Z Sui , W W Jin . . Phys Chem Chem. Phys , 2016 . 18 3838 - 3845 . DOI:10.1039/C5CP07558Khttp://doi.org/10.1039/C5CP07558K.
L Cao , X Wang , M J Meziani , F Lu , H Wang , P G Luo , Y Lin , Y P Sun . . J Chem Am Soc , 2007 . 129 11318 - 11319 . DOI:10.1021/ja073527lhttp://doi.org/10.1021/ja073527l.
H M Kim , B R Cho . . Chem Commun , 2009 . 153 - 164.
S Kim , Q Zheng , G S He , D J Bharali , H E Pudavar , A Baev , P N Prasad . . Adv Funct Mater , 2006 . 16 2317 - 2323 . DOI:10.1002/(ISSN)1616-3028http://doi.org/10.1002/(ISSN)1616-3028.
L Beverina , J Fu , A Leclercq , E Zojer , P Pacher , S Barlow , Stryland E W van , D J Hagan , J L Bredas , S R Marder . . J Am Chem Soc , 2005 . 127 7282 - 7283 . DOI:10.1021/ja050688lhttp://doi.org/10.1021/ja050688l.
S Zhu , L Wang , N Zhou , X Zhao , Y Song , S Maharjan , J Zhang , L Lu , H Wang , B Yang . . Chem Commun , 2014 . 13845 - 13848.
S Zhu , Y Song , J Shao , X Zhao , B Yang . . Angew Chem Int Ed , 2015 . 54 14626 - 14637 . DOI:10.1002/anie.201504951http://doi.org/10.1002/anie.201504951.
0
Views
60
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution