Vitrification and gelation are two main paths for matters to transform from liquid to solid in nature. During these transition processes
the dynamics of the systems becomes slower
and there appears a relatively fast and slow dynamics
which finally results in the heterogeneous distribution of dynamics in the space and time. This dynamic heterogeneity in the space and time has been reported to diverge following the power law when approaching to the glass transition. However
it is still unclear for the dynamic heterogeneity evolution when approaching to the gelation. In this work
the dynamic heterogeneity in a gelatin solution during isothermal gelation at 22℃ was monitored by the probe particle tracking microrheology. The gel point was determined as the waiting time
t
w
=8 min through the ensemble averaged dynamic modulus
which was obtained from the mean square displacement of the particles using the generalized Stokes-Einstein relation (GSER). The spatial distribution of the loss angle tan
δ
was established from the particle trajectories to represent heterogeneous viscoelasticity in the gelatin during the gelation. Then
the dynamic heterogeneity change during the gelation was quantitatively evaluated by the van Hove function and the non-Gaussian parameter
α
2
. The dynamics was found to be heterogeneous after gelation in both respects of space and time
and the fast dynamics contributed more after gelation when compared with that before gelation. To further investigate the spatial and time correlation for this dynamic heterogeneity
the 4-point correlation function and 4-point susceptibility were measured on the base of particle tracking statistics. The results indicated that
before gelation of the gelatin solution
the fast relaxation proceeded independently
while the slow relaxation occurred with a large spatial correlation containing more surrounding units. On the other hand
after gelation both the fast and slow relaxations processed correlatively and cooperatively with more surrounding units. This was consistent with the result from molecular dynamics simulation for the chemically crosslinked polymer gels.
Struik, L C E. Physical Aging in Amorphous Polymers and Other Materials. New York:Elsevier Science, 1978. 1-183
Binder K, Kob W. Glassy Materials and Disordered Solids:An Introduction to Their Statistical Mechanics. Singapore:World Scientific, 2011. 1-516http://scitation.aip.org/content/aip/magazine/physicstoday/article/59/9/10.1063/1.2364252
L Berthier , G Biroli . . Rev Mod Phys , 2011 . 83 ( 2 ): 587 - 645 . DOI:10.1103/RevModPhys.83.587http://doi.org/10.1103/RevModPhys.83.587.
S Karmakar , C Dasgupta , S Sastry . . Annu Rev Condens Matter Phys , 2014 . 5 ( 1 ): 255 - 284 . DOI:10.1146/annurev-conmatphys-031113-133848http://doi.org/10.1146/annurev-conmatphys-031113-133848.
K Smarajit , D Chandan , S Srikanth . . Rep Prog Phys , 2016 . 79 ( 1 ): 016601 DOI:10.1088/0034-4885/79/1/016601http://doi.org/10.1088/0034-4885/79/1/016601.
C Dasgupta , A V Indrani , R Sriram , M K Phani . . Europhys Lett , 1991 . 15 ( 3 ): 307 - 312 . DOI:10.1209/0295-5075/15/3/013http://doi.org/10.1209/0295-5075/15/3/013.
C Brun , F Ladieu , D L'Hôte , G Biroli , J P Bouchaud . . Phys Rev Lett , 2012 . 109 ( 17 ): 175702 DOI:10.1103/PhysRevLett.109.175702http://doi.org/10.1103/PhysRevLett.109.175702.
L Berthier , G Biroli , J P Bouchaud , L Cipelletti , D E Masri , D L'Hote , F Ladieu , M Pierno . . Science , 2005 . 310 ( 5755 ): 1797 - 1800 . DOI:10.1126/science.1120714http://doi.org/10.1126/science.1120714.
Ferry J D. Viscoelastic Properties of Polymers, 3rd ed. New York:John Wiley & Sons, 1980. 1-590
Stauffer, D, Coniglio, A, Adam, M. Gelation and critical phenomena. In:Dušek K, ed. Polymer Networks. Berlin:Springer, 1982. 103-158
D Stauffer . . Physica A , 1981 . 106 ( 1-2 ): 177 - 188 . DOI:10.1016/0378-4371(81)90218-1http://doi.org/10.1016/0378-4371(81)90218-1.
D Wirtz . . Annu Rev Biophys , 2009 . 38 ( 1 ): 301 - 326 . DOI:10.1146/annurev.biophys.050708.133724http://doi.org/10.1146/annurev.biophys.050708.133724.
T M Squires , T G Mason . . Annu Rev Fluid Mech , 2009 . 42 ( 1 ): 413 - 438 . http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-121108-145608?journalCode=fluid.
F C MacKintosh , C F Schmidt . . Curr Opin Colloid Interface Sci , 1999 . 4 ( 4 ): 300 - 307 . DOI:10.1016/S1359-0294(99)90010-9http://doi.org/10.1016/S1359-0294(99)90010-9.
T A Waigh . . Rep Prog Phys , 2005 . 68 ( 3 ): 685 - 742 . DOI:10.1088/0034-4885/68/3/R04http://doi.org/10.1088/0034-4885/68/3/R04.
T A Waigh . . Rep Prog Phys , 2016 . 79 ( 7 ): 074601 DOI:10.1088/0034-4885/79/7/074601http://doi.org/10.1088/0034-4885/79/7/074601.
T G Mason . . Rheol Acta , 2000 . 39 ( 4 ): 371 - 378 . DOI:10.1007/s003970000094http://doi.org/10.1007/s003970000094.
A Corrigan , A Donald . . Eur Phys J E , 2009 . 28 ( 4 ): 457 - 462 . DOI:10.1140/epje/i2008-10439-7http://doi.org/10.1140/epje/i2008-10439-7.
C H Lee , A J Crosby , T Emrick , R C Hayward . . Macromolecules , 2014 . 47 ( 2 ): 741 - 749 . DOI:10.1021/ma402373shttp://doi.org/10.1021/ma402373s.
M T Valentine , P D Kaplan , D Thota , J C Crocker , T Gisler , R K Prud'homme , M Beck , D A Weitz . . Phys Rev E , 2001 . 64 ( 6 ): 061506 DOI:10.1103/PhysRevE.64.061506http://doi.org/10.1103/PhysRevE.64.061506.
D P Penaloza , A Shundo , K Matsumoto , M Ohno , K Miyaji , M Goto , K Tanaka . . Soft Matter , 2013 . 9 ( 21 ): 5166 - 5172 . DOI:10.1039/c3sm50225bhttp://doi.org/10.1039/c3sm50225b.
A Coniglio , T Abete , A de Candia , E Del Gado , A Fierro . . Eur Phys J-Spec Top , 2008 . 161 ( 1 ): 45 - 54 . DOI:10.1140/epjst/e2008-00749-0http://doi.org/10.1140/epjst/e2008-00749-0.
W Sun , L Huang , Y Yang , X Liu , Z Tong . . Chinese J Polym Sci , 2015 . 33 ( 1 ): 70 - 83 . DOI:10.1007/s10118-015-1559-5http://doi.org/10.1007/s10118-015-1559-5.
L van Hove . . Phys Rev , 1954 . 95 ( 1 ): 249 - 262 . DOI:10.1103/PhysRev.95.249http://doi.org/10.1103/PhysRev.95.249.
S C Glotzer , V N Novikov , T B Schroder . . J Chem Phys , 2000 . 112 ( 2 ): 509 - 512 . DOI:10.1063/1.480541http://doi.org/10.1063/1.480541.
T Savin , P S Doyle . . Biophys J , 2005 . 88 ( 1 ): 623 - 638 . DOI:10.1529/biophysj.104.042457http://doi.org/10.1529/biophysj.104.042457.
Effect of Photopolymerization Kinetics of Acrylate/Liquid Crystal Syrups on Electro-optical Properties of Polymer Dispersed Liquid Crystals
CRITICAL BEHAVIOR OF GELATION OF ALGINATE/XANTHAN MIXTURES INDUCED BY Ca2+ IONS
PHOTOPOLYMERIZATION KINETICS AND PHOTO-RHEOLOGICAL BEHAVIORS OF VINYL-MONOMERS
GELATION IN ALGINATE SOLUTIONS AND ITS APPLICATIONS IN CARTILAGE TISSUE-ENGINEERING AND DRUG CONTROLLED RELEASE
Related Author
No data
Related Institution
Key Laboratory of Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology
National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology
Glyn O.Phillips Hydrocolloid Research Center, School of Food and Pharmaceutical Engineering, Faculty of Light Industry, Hubei University of Technology
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology
1 Department of Materials Science and Engineering,Jinan University