poly(amic acid) (PAA) has significant influence on the properties of the final materials. The stability of PAA solution under different conditions is also important to control the properties of PI. In this work
soluble 6FDA-TFDB PAA was synthesized and its solution was obtained. Using FTIR
1
H-NMR and GPC techniques
the molecular information of PAA was obtained. The degradation behavior was investigated by rheometer under different conditions (temperature
heating rate
water content
etc
.). It was found that the degradation rate in a high temperature region was much faster than that in a low temperature region
and a critical temperature was found to exist between these two temperature regions. Influence of added water amount in PAA solution on degradation behavior was also considered. In order to analyze precisely the influence of water amount on PAA degradation behavior
the amount of water in DMAc was analyzed by Karl Fischer method and demonstrated that it was too small to influence the relevant results. It was found that water accelerated the degradation rate of PAA solution in the low temperature region
but was irrelevant in the high temperature region. Based on Andrade equation
the viscous-flow activation energy was obtained and compared to evaluate the degradation rate of PAA in solution under different conditions
through a semi-quantitative way. Different results were found at low/high storage temperatures:at low storage temperature the viscosity of PAA solution was kept constant at first
then increased to a maximum and finally decreased; at high storage temperature it decreased gradually to a low value and remained constant. Based on degradation mechanism of PAA chains
the degradation behavior under different conditions was explained. This work provides a guide to tune the solution properties of PAA
and also to control the properties of polyimide materials.
关键词
聚酰胺酸降解行为流变仪黏度黏流活化能
Keywords
Poly (amic acid)Degradation behaviorRheometerViscosityViscous-flow activation energy
A Takuma , K Hiroyoshi . . Polymer , 2012 . 53 2217 - 2222 . DOI:10.1016/j.polymer.2012.03.059http://doi.org/10.1016/j.polymer.2012.03.059.
C Zhang , Q Zhang , Y Xue , G Li , F Liu , X Qiu , X Ji , L Gao . . Chem Res Chin Univ , 2014 . 30 163 - 167 . DOI:10.1007/s40242-014-3266-0http://doi.org/10.1007/s40242-014-3266-0.
X Qu , M Ji , L Fan , S Yang . . High Perform Polym , 2011 . 23 281 - 289 . DOI:10.1177/0954008311403839http://doi.org/10.1177/0954008311403839.
B Li , Y Pang , C Fang , J Gao , X Wang , C Zhang , X Liu . . J Appl Polym Sci , 2014 . 131 40498 .
L Wang , A Hu , L Fan , S Yang . . High Perform Polym , 2013 . 25 956 - 965 . DOI:10.1177/0954008313492550http://doi.org/10.1177/0954008313492550.
J Dong , C Yin , X Zhao , Y Li , Q Zhang . . Polymer , 2013 . 54 6415 - 6424 . DOI:10.1016/j.polymer.2013.09.035http://doi.org/10.1016/j.polymer.2013.09.035.
H Wang , T Wang , S Yang , L Fan . . Polymer , 2013 . 54 6339 - 6348 . DOI:10.1016/j.polymer.2013.09.036http://doi.org/10.1016/j.polymer.2013.09.036.
I K Varma , R N Goel , D S Varma . . Die Ang Makr Chem , 1977 . 64 101 - 113 . DOI:10.1002/apmc.1977.050640109http://doi.org/10.1002/apmc.1977.050640109.
P M Cotts , W Volksen , S Ferline . . J Polym Sci, Part B:Polym Phys , 1992 . 30 373 - 379 . DOI:10.1002/polb.1992.090300407http://doi.org/10.1002/polb.1992.090300407.
D E Fjare . . Macromolecules , 1993 . 26 5143 - 5148 . DOI:10.1021/ma00071a025http://doi.org/10.1021/ma00071a025.
V N Artem'eva , V V Kudryavtsev , E M Nekrasova , V P Sklizkova , N G Belnikevich , L M Kaluzhnaya , I G Silinskaya , O P Shkurko , V P Borovik . . Russ Chem Bull , 1993 . 42 1673 - 1676 . DOI:10.1007/BF00697037http://doi.org/10.1007/BF00697037.
D Cai , J Su , M Huang , Y Liu , J Wang , L Dai . . Polym Degrad Stab , 2011 . 96 2174 - 2180 . http://www.sciencedirect.com/science/article/pii/S014139101100303X.
J Yang , M A Lee . . Macromol Res , 2004 . 12 263 - 268 . DOI:10.1007/BF03218398http://doi.org/10.1007/BF03218398.
J A Kreuz . . J Polym Sci A , 1990 . 28 3787 - 3793 . DOI:10.1002/pola.1990.080281321http://doi.org/10.1002/pola.1990.080281321.
E N D Andrade . . Nature , 1930 . 125 582 - 584 . DOI:10.1038/125582a0http://doi.org/10.1038/125582a0.
Krevelen D W, Nijenhuis K. Properties of Polymers:Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. 4 th ed. Singapore:Elsevier Pre Led, 2010. 792-794http://ci.nii.ac.jp/ncid/BA39896427
C P Yang , S H Hsiao . . J Appl Polym Sci , 1985 . 30 2883 - 2905 . DOI:10.1002/app.1985.070300715http://doi.org/10.1002/app.1985.070300715.
R A Dinehart , W W Wright . . J Appl Polym Sci , 1967 . 11 609 - 627 . DOI:10.1002/app.1967.070110501http://doi.org/10.1002/app.1967.070110501.
M L Bender , Y L Chou , F Chloupek . . J Am Chem Soc , 1958 . 80 5380 - 5384 . DOI:10.1021/ja01553a015http://doi.org/10.1021/ja01553a015.