Polypropylene (PP) is still one of the most important general plastics
and it is of great significance to achieve high-performance PP materials. As a semicrystalline polymer
PP is essentially polymorphism. At least five polymorphs have been identified
i.e.
α
β
γ
δ
and quasi-hexagonal form. Among them
β
form is highly desirable
due to its excellent physical properties. However
β
crystals are hard to be obtained
via
common crystalline condition. The polymorphic modification by adding
β
-nucleator (
β
-NA) is a powerful method for achieving dominant
β
form and thus tailoring the toughness and thermal stability of PP. In contrast to many past researches which focused on the roles of crystallinity and
β
-phase content
a new methodology has been recently suggested which optimized the physical properties of PP by controlling
β
-crystalline morphology. Some relevant studies include:(1) to assess the solubility and self-assembly behavior of
β
-NA by using temperature gradient (g-
T
) field; (2) to control the
β
-crystalline morphology by processing varables and
β
-NA content
and receive super-high toughness and good heat stability; (3) to reveal the rule of stretching-induced porosity in the
β
-PP films with different crystalline morphologies.
β
-NA of low-molecular-weight is soluble in the melt of PP
which will self-assemble into supermolecular structures prior to the primary crystallization of PP during the cooling process. Such supermolecular structures act as templates for the guidance of PP crystallization
resulting in special crystalline morphologies. By using the g-
T
technique
the dependence of
β
-NA solubility on molten temperature and nucleator loading could be clarified readily. Thus the crystalline morphology of
β
-PP is controllable
and different morphologies
such as spherulite
transcrystallinity and flower-like aggregations
are achievable through adjusting the solubility and self-assembly behavior of
β
-NA. Special crystalline morphology leads to a significant increase in the tensile ductility of
β
-PP. Meanwhile
the heat distortion temperature and homogeneity of microporosity are also strongly dependent on
β
-crystalline morphology. Obviously
the manipulation of crystalline morphology is a promising pathway to realize high-performance in crystalline polymers.
L Chvatalova , J Navratilova , R Cermak , M Raab , M Obadal . . Macromolecules , 2009 . 42 ( 19 ): 7413 - 7417 . DOI:10.1021/ma9005878http://doi.org/10.1021/ma9005878.
S Zhao , Z Cai , Z Xin . . Polymer , 2008 . 49 ( 11 ): 2745 - 2754 . DOI:10.1016/j.polymer.2008.04.012http://doi.org/10.1016/j.polymer.2008.04.012.
F Luo , K Wang , N Ning , C Geng , H Deng , F Chen , Q Fu . . Polym Adv Technol , 2011 . 22 ( 12 ): 2044 - 2054 . DOI:10.1002/pat.v22.12http://doi.org/10.1002/pat.v22.12.
W Xiao , P Wu , J Feng , R Yao . . J Appl Polym Sci , 2009 . 111 ( 2 ): 1076 - 1085 . DOI:10.1002/app.v111:2http://doi.org/10.1002/app.v111:2.
Z Wu , G Wang , M Zhang , K Wang , Q Fu . . Soft Matter , 2016 . 12 ( 2 ): 594 - 601 . DOI:10.1039/C5SM02030Ahttp://doi.org/10.1039/C5SM02030A.
F Luo , C Geng , K Wang , H Deng , F Chen , Q Fu , B Na . . Macromolecules , 2009 . 42 ( 23 ): 9325 - 9331 . DOI:10.1021/ma901651fhttp://doi.org/10.1021/ma901651f.
Y Zhu , Y Zhao , Q Fu . . Polymer , 2016 . 103 ( 2 ): 405 - 414.
T Wu , M Xiang , Y Cao , J Kang , F Yang . . RSC Adv , 2014 . 4 ( 69 ): 36689 - 36701 . DOI:10.1039/C4RA03589Ehttp://doi.org/10.1039/C4RA03589E.
T Wu , M Xiang , Y Cao , J Kang , F Yang . . RSC Adv , 2014 . 4 ( 81 ): 43012 - 43023 . DOI:10.1039/C4RA06310Dhttp://doi.org/10.1039/C4RA06310D.
T Wu , M Xiang , Y Cao , J Kang , F Yang . . RSC Adv , 2015 . 5 ( 54 ): 43496 - 43507 . DOI:10.1039/C5RA05844Ahttp://doi.org/10.1039/C5RA05844A.
H Bai , W Zhang , H Deng , Q Zhang , Q Fu . . Macromolecules , 2011 . 44 ( 6 ): 1233 - 1237 . DOI:10.1021/ma102439thttp://doi.org/10.1021/ma102439t.
H Bai , C Huang , H Xiu , Q Zhang , Q Fu . . Polymer , 2014 . 55 ( 26 ): 6924 - 6934 . DOI:10.1016/j.polymer.2014.10.059http://doi.org/10.1016/j.polymer.2014.10.059.
H Bai , C Huang , H Xiu , Q Zhang , H Deng , K Wang , F Chen , Q Fu . . Biomacromolecules , 2014 . 15 ( 4 ): 1507 - 1514 . DOI:10.1021/bm500167uhttp://doi.org/10.1021/bm500167u.
M Kristiansen , M Werner , T Tervoort , P Smith , M Blomenhofer , H Schmidt . . Macromolecules , 2003 . 36 ( 14 ): 5150 - 5156 . DOI:10.1021/ma030146thttp://doi.org/10.1021/ma030146t.
T Shepard , C Delsorbo , R Louth , J Walborn , D Norman , N Harvey , R Spontak . . J Polym Sci, Part B:Polym Phys , 1997 . 35 ( 16 ): 2617 - 2628 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488.
A Nogales , R Olley , G Mitchell . . Macromol Rapid Commun , 2003 . 24 ( 8 ): 496 - 502 . DOI:10.1002/marc.200390077http://doi.org/10.1002/marc.200390077.
A Nogales , G Mitchell , A Vaughan . . Macromolecules , 2003 . 36 ( 13 ): 4898 - 4906 . DOI:10.1021/ma0343028http://doi.org/10.1021/ma0343028.
L Balzano , S Rastogi , G Peters . . Macromolecules , 2008 . 41 ( 2 ): 399 - 408 . DOI:10.1021/ma071460ghttp://doi.org/10.1021/ma071460g.