
浏览全部资源
扫码关注微信
中国科学院理化技术研究所 北京 100190
Published:2017-9,
Received:7 April 2017,
Revised:2 May 2017,
扫 描 看 全 文
Chao Wang, Meng-meng Zhao, Pei Huang, Xian-meng Rao, Min Wu, Yong Huang. Influence of Medium Polarity and Mechanical Force on Morphology and Structure of Nanocellulose. [J]. Acta Polymerica Sinica (9):1415-1425(2017)
Chao Wang, Meng-meng Zhao, Pei Huang, Xian-meng Rao, Min Wu, Yong Huang. Influence of Medium Polarity and Mechanical Force on Morphology and Structure of Nanocellulose. [J]. Acta Polymerica Sinica (9):1415-1425(2017) DOI: 10.11777/j.issn1000-3304.2017.17080.
纤维素是一种由直链多聚糖通过糖苷键连接而成的巨型线性高分子,纤维素分子链通过氢键紧密排列形成纤维素晶体.由于纤维素晶体具有优良的化学可修饰性和机械性能等优点,纳米化加工的纤维素可广泛应用于日常生活和工业生产的各个领域.本文主要介绍了本课题组在机械剪切力作用下,实现纤维素纳米化并同时进行亲水或疏水改性的研究进展,重点介绍了介质极性对纤维素分子链之间相互作用的影响,并通过改变分子链之间的相互作用来调控纳米化纤维素的形貌和亲、疏水性.提出机械外力和环境极性协同作用下,晶面导向剥离纤维素的理论.
The crystallite of native cellulose has hydrophilic (110)/(1
1
0) facets with abundant hydroxyl groups and hydrophobic (200) facets with C-H bonds. The cellulose chains form crystal
via
intra-layer hydrogen bonds along (200) plane and van der Waals stacking along (110) and (1
1
0) planes. Inspired by these anisotropic interactions
we propose new concepts for manipulating themorphology and properties of nanocellulose. The progress along this line in our group in the last five years is reviewed and the influence of medium polarity on the way of cellulose disintegration is emphasized. Dry (no liquid) milling of cellulose causes its decrystallization
while the presence of a liquid changes the behavior significantly. Addition of nonpolar liquids slows down the decrystallization process
and a new form of cellulose is generated in this process as an intermediate product
namely "cellulose nanosheet"
which has a form of flat sheets with basic unit of 2-4 nm thickness
apparently formed by coalescence of elementary fibrils. Addition of polar liquids basically prevents decrystallization
leading to individualization of nanofiber into elementary fibrils or their aggregate bundles. Addition of esterifying agents to cellulose-organic solvent system promotes nanofiber dispersion
via
esterification of the surface hydroxyls of cellulose. Here
a characteristic difference is found between polar and nonpolar solvents as reaction medium
suggesting the involvement of specific interaction between solvent molecules and crystallographic planes of the cellulose. One unique discovery is the involvement of pot material in cellulose milling:dry milling of cellulose in PTFE pot was found to result in nano-coating of cellulose particles by PTFE. This phenomenon is interpreted as an instance of friction transfer
which has been observed for PTFE under controlled setups. Its occurrence in ball milling of cellulose may lead to a new class of cellulose-based materials. As a whole
physicochemical modification of crystalline cellulose was found to involve interactions with environments of polar/nonpolar natures. Exploration of this concept may lead to various innovative technologies in cellulose processing.
介质极性纳米纤维疏水纳米片形貌结构
Medium polarityNanocellulosHydrophobic nanosheetMorphology structure
S J Eichhorn , A Dufresne , M Aranguren , N E Marcovich , J R Capadona , S J Rowan , C Weder , W Thielemans , M Roman , S Renneckar , W Gindl , S Veigel , J Keckes , H Yano , K Abe , M Nogi , A N Nakagaito , A Mangalam , J Simonsen , A S Benight , A Bismarck , L A Berglund , T Peijs . . J Mater Sci , 2010 . 45 1 - 33 . DOI:10.1007/s10853-009-3874-0http://doi.org/10.1007/s10853-009-3874-0.
X G Luo , L N Zhang . . Food Res Int , 2013 . 52 387 - 400 . DOI:10.1016/j.foodres.2010.05.016http://doi.org/10.1016/j.foodres.2010.05.016.
R J Moon , A Martini , J Nairn , J Simonsen , J Youngblood . . Chem Soc Rev , 2011 . 40 3941 - 3994 . DOI:10.1039/c0cs00108bhttp://doi.org/10.1039/c0cs00108b.
Y Nishiyama , J Sugiyama , H Chanzy , P Langan . . J Am Chem Soc , 2003 . 125 14300 - 14306 . DOI:10.1021/ja037055whttp://doi.org/10.1021/ja037055w.
A Sturcova , I His , D C Apperley , J Sugiyama , M C Jarvis . . Biomacromolecules , 2004 . 5 1333 - 1339 . DOI:10.1021/bm034517phttp://doi.org/10.1021/bm034517p.
X H Qian , S Y Ding , M R Nimlos , D K Johnson , M E Himmel . . Macromolecules , 2005 . 38 10580 - 10589 . DOI:10.1021/ma051683bhttp://doi.org/10.1021/ma051683b.
M Wada . . J. Polym Sci, Part B:Polym Phys , 2002 . 40 1095 - 1102 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488.
Q Li , S Renneckar . . Cellulose , 2009 . 16 1025 - 1032 . DOI:10.1007/s10570-009-9329-6http://doi.org/10.1007/s10570-009-9329-6.
Q Q Li , S Renneckar . . Biomacromolecules , 2011 . 12 650 - 659 . DOI:10.1021/bm101315yhttp://doi.org/10.1021/bm101315y.
K Mazeau , A Rivet . . Biomacromolecules , 2008 . 9 1352 - 1354 . DOI:10.1021/bm7013872http://doi.org/10.1021/bm7013872.
P S Belton , S F Tanner , N Cartier , H Chanzy . . Macromolecules , 1989 . 22 1615 - 1617 . DOI:10.1021/ma00194a019http://doi.org/10.1021/ma00194a019.
E M Debzi , H Chanzy , J Sugiyama , P Tekely , G Excoffier . . Macromolecules , 1991 . 24 6816 - 6822 . DOI:10.1021/ma00026a002http://doi.org/10.1021/ma00026a002.
B Lindman , G Karlstrom , L Stigsson . . J Mol Liq , 2010 . 156 76 - 81 . DOI:10.1016/j.molliq.2010.04.016http://doi.org/10.1016/j.molliq.2010.04.016.
S Ouajai , R A Shanks . . Cellulose , 2006 . 13 31 - 44 . DOI:10.1007/s10570-005-9020-5http://doi.org/10.1007/s10570-005-9020-5.
V Kumar , T Yang . . Int J Pharm , 1999 . 184 219 - 226 . DOI:10.1016/S0378-5173(99)00098-8http://doi.org/10.1016/S0378-5173(99)00098-8.
H Ono , M Inamoto , K Okajima , Y Yaginuma . . Cellulose , 1997 . 4 57 - 73 . DOI:10.1023/A:1018415201945http://doi.org/10.1023/A:1018415201945.
M Ago , T Endo , T Hirotsu . . Cellulose , 2004 . 11 163 - 167 . DOI:10.1023/B:CELL.0000025423.32330.fahttp://doi.org/10.1023/B:CELL.0000025423.32330.fa.
K Sato , H Mochizuki , K Okajima , C Yamane . . Polym J (Tokyo, Jpn.) , 2004 . 36 478 - 482 . DOI:10.1295/polymj.36.478http://doi.org/10.1295/polymj.36.478.
M Ago , T Endo , K Okajima . . Polym J (Tokyo, Jpn.) , 2007 . 39 435 - 441 . DOI:10.1295/polymj.PJ2006096http://doi.org/10.1295/polymj.PJ2006096.
P Huang , M Wu , S Kuga , D Q Wang , D Y Wu , Y Huang . . ChemSusChem , 2012 . 5 2319 - 2322 . DOI:10.1002/cssc.v5.12http://doi.org/10.1002/cssc.v5.12.
S F Nielsen , D Peters , O Axelsson . . Synth Commun , 2000 . 30 3501 - 3509 . DOI:10.1080/00397910008087262http://doi.org/10.1080/00397910008087262.
L M Klingensmith , N E Leadbeater . . Tetrahedron Lett , 2003 . 44 765 - 768 . DOI:10.1016/S0040-4039(02)02645-Xhttp://doi.org/10.1016/S0040-4039(02)02645-X.
E Tullberg , D Peters , T Frejd . . J Organomet Chem , 2004 . 689 3778 - 3781 . DOI:10.1016/j.jorganchem.2004.06.045http://doi.org/10.1016/j.jorganchem.2004.06.045.
R Thorwirth , A Stolle , B Ondruschka . . Green Chem , 2010 . 12 985 - 991 . DOI:10.1039/c000674bhttp://doi.org/10.1039/c000674b.
H J Wu , M Liang , C H Lu . . Thermochim Acta , 2012 . 545 148 - 156 . DOI:10.1016/j.tca.2012.07.008http://doi.org/10.1016/j.tca.2012.07.008.
P Huang , Y Zhao , S Kuga , M Wu , Y Huang . . Nanoscale , 2016 . 8 3753 - 3759 . DOI:10.1039/C5NR08179Chttp://doi.org/10.1039/C5NR08179C.
Tingting Xia . . Jiangsu Chemical Industry , 2008 . 36 10 - 14 . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jshg200802004&dbname=CJFD&dbcode=CJFQ.
夏 婷婷 . . 江苏化工 , 2008 . 36 10 - 14 . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jshg200802004&dbname=CJFD&dbcode=CJFQ.
P Huang , M Wu , S Kuga , Y Huang . . Cellulose , 2013 . 20 2175 - 2178 . DOI:10.1007/s10570-013-9940-4http://doi.org/10.1007/s10570-013-9940-4.
M M Zhao , S Kuga , S D Jiang , M Wu , Y Huang . . Cellulose , 2016 . 23 2809 - 2818 . DOI:10.1007/s10570-016-1033-8http://doi.org/10.1007/s10570-016-1033-8.
D Klemm , B Heublein , H P Fink , A Bohn . . Angew Chem Int Ed , 2005 . 44 3358 - 3393 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
M M Zhao , S Kuga , M Wu , Y Huang . . Green Chem , 2016 . 18 3006 - 3012 . DOI:10.1039/C6GC00660Dhttp://doi.org/10.1039/C6GC00660D.
A C OSullivan . . Cellulose , 1997 . 4 173 - 207 . DOI:10.1023/A:1018431705579http://doi.org/10.1023/A:1018431705579.
K Conley , L Godbout , M A Whitehead , T G M van de Ven . . Carbohydr Polym , 2016 . 135 285 - 299 . DOI:10.1016/j.carbpol.2015.08.029http://doi.org/10.1016/j.carbpol.2015.08.029.
J Araki , S Kuga . . Langmuir , 2001 . 17 4493 - 4496 . DOI:10.1021/la0102455http://doi.org/10.1021/la0102455.
S Elazzouzi-Hafraoui , Y Nishiyama , J L Putaux , L Heux , F Dubreuil , C Rochas . . Biomacromolecules , 2008 . 9 57 - 65 . DOI:10.1021/bm700769phttp://doi.org/10.1021/bm700769p.
Y Habibi , L A Lucia , O J Rojas . . Chem Rev , 2010 . 110 3479 - 3500 . DOI:10.1021/cr900339whttp://doi.org/10.1021/cr900339w.
L T Bu , M E Himmel , M F Crowley . . Carbohydr Polym , 2015 . 125 146 - 152 . DOI:10.1016/j.carbpol.2015.02.023http://doi.org/10.1016/j.carbpol.2015.02.023.
J A Hadden , A D French , R J Woods . . Cellulose , 2014 . 21 879 - 884 . DOI:10.1007/s10570-013-0051-zhttp://doi.org/10.1007/s10570-013-0051-z.
I Jang , D L Burris , P L Dickrell , P R Barry , C Santos , S S Perry , S R Phillpot , S B Sinnott , W G Sawyer . . J Appl Phys , 2007 . 102 123509 DOI:10.1063/1.2821743http://doi.org/10.1063/1.2821743.
D W Breiby , T I Solling , O Bunk , R B Nyberg , K Norrman , M M Nielsen . . Macromolecules , 2005 . 38 2383 - 2390 . DOI:10.1021/ma0492465http://doi.org/10.1021/ma0492465.
V R Kearns , P J Doherty , G Beamson , N Martin , R L Williams . . J Mater Sci-Mater M , 2010 . 21 2213 - 2226 . DOI:10.1007/s10856-010-4081-xhttp://doi.org/10.1007/s10856-010-4081-x.
R Janot , D Guerard . . Prog Mater Sci , 2005 . 50 1 - 92 . DOI:10.1016/S0079-6425(03)00050-1http://doi.org/10.1016/S0079-6425(03)00050-1.
0
Views
40
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621