Cracks may appear in epoxy resins once suffered the external impact and pressure. If cracks can be remended by material itself
then the service life of the materials can be extended and severe incident can be avoided. Herein
an epoxy monomer containing diene is synthesized
via
the reaction between epichlorohydrin and furfuryl alcohol. A self-healing epoxy resin based on thermo-reversible Diels-Alder reaction (EP-DA) is prepared by the reaction between the resultant epoxy monomer and bismaleimide. The chemical structure
thermal property
and thermal reversibility of the prepared EP-DA are characterized by FTIR
DSC
and gel-sol transition. Results show that thermo-reversible DA bonds are introduced into the epoxy resin successfully. Consequently
EP-DA is endowed with excellent thermal reversibility and reprocessing performance. The self-healing behavior is examined by investigating both the crack evolution and the recovery of mechanical property. Based on the study about the effect of heat treatment on the crack repair in depth
the optimal heat treatment parameters are determined as 122 ℃/45 min and 67 ℃/36 h. By simulating the impact failure situation in actual state
the self-healing performance of the epoxy resin is investigated by a combination of qualitative observation and quantitative measurement of flexural load restoring. Results reveal that the crack narrows down and flexural strength enhances gradually with extended heat treatment. It is shown that the epoxy resins exhibit excellent self-healing performance
and the healing efficiency can achieve 77.1%. Meanwhile
cracks can be caused and repaired for more than three times. The healing efficiency can still reach 53.9% when the same sample has been impacted and repaired for three cycles. These manifest that the epoxy resins also show outstanding multiple self-healing performance. Additionally
the EP-DA exhibits excellent reprocessing performance
and PU-DA fragments can recombine together as a whole upon heating treatment at 122 ℃/2 h and 67 ℃/36 h. The result makes it possible for recycling the waste epoxy resins.
D Min , W Zhou , Y Qing . . J Mater Sci , 2017 . 52 ( 4 ): 2373 - 2383 . DOI:10.1007/s10853-016-0532-1http://doi.org/10.1007/s10853-016-0532-1.
A Romo-Uribe , K Santiago-Santiago , A Reyes-Mayer . . Eur Polym J , 2017 . 89 101 - 118 . DOI:10.1016/j.eurpolymj.2017.01.041http://doi.org/10.1016/j.eurpolymj.2017.01.041.
Y Wang , S K R Pillai , J Che . . ACS Appl Mater Interfaces , 2017 . 9 ( 10 ): 8960 - 8966 . DOI:10.1021/acsami.6b13197http://doi.org/10.1021/acsami.6b13197.
M Raimondo , L Guadagno , C Naddeo . . J Mol Struct , 2017 . 1130 400 - 407 . DOI:10.1016/j.molstruc.2016.10.060http://doi.org/10.1016/j.molstruc.2016.10.060.
G Han , Z Yang , X X Yang . . Chinese J Polym Sci , 2016 . 34 ( 9 ): 1103 - 1116 . DOI:10.1007/s10118-016-1832-2http://doi.org/10.1007/s10118-016-1832-2.
N Bai , G Simon , K Saito . . RSC Adv , 2013 . 3 ( 43 ): 20699 - 20707 . DOI:10.1039/c3ra43746ahttp://doi.org/10.1039/c3ra43746a.
V Froidevaux , M Borne , E Laborbe . . RSC Adv , 2015 . 5 ( 47 ): 37742 - 37754 . DOI:10.1039/C5RA01185Jhttp://doi.org/10.1039/C5RA01185J.
G Deng , C Tang , F Li , H Jiang , Y Chen . . Macromolecules , 2010 . 43 ( 3 ): 1191 - 1194 . DOI:10.1021/ma9022197http://doi.org/10.1021/ma9022197.
V R Sastri , G C Tesoro . . J Appl Polym Sci , 1990 . 39 ( 7 ): 1439 - 1457 . DOI:10.1002/app.1990.070390703http://doi.org/10.1002/app.1990.070390703.
C E Yuan , M Z Rong , M Q Zhang , Z P Zhang , Y C Yuan . . Chem Mater , 2011 . 23 5076 - 5081 . DOI:10.1021/cm202635whttp://doi.org/10.1021/cm202635w.
P Mineo , V Barbera , G Romeo . . J Appl Polym Sci , 2015 . 132 ( 30 ): 42314 http://onlinelibrary.wiley.com/doi/10.1002/app.42314/pdf.
V Froidevaux , M Borne , E Laborbe . . RSC Adv , 2015 . 5 ( 47 ): 37742 - 37754 . DOI:10.1039/C5RA01185Jhttp://doi.org/10.1039/C5RA01185J.
X Kuang , G Liu , X Dong . . Polymer , 2016 . 84 1 - 9 . DOI:10.1016/j.polymer.2015.12.033http://doi.org/10.1016/j.polymer.2015.12.033.
A M Peterson , R E Jensen , G R Palmese . . ACS Appl Mater Interfaces , 2013 . 5 ( 3 ): 815 - 821 . DOI:10.1021/am302383vhttp://doi.org/10.1021/am302383v.
Y Liu , H Chia-Yun . . J Polym Sci, Part A:Polym Chem , 2006 . 44 ( 2 ): 905 - 913 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
G Postiglione , S Turri , M Levi . . Prog Org Coat , 2014 . 78 526 - 531 . http://www.sciencedirect.com/science/article/pii/S0300944014001945.
Q Tian , M Z Rong , M Q Zhang . . Polym Int , 2010 . 59 ( 10 ): 1339 - 1345 . DOI:10.1002/pi.v59:10http://doi.org/10.1002/pi.v59:10.
Q Tian , Y C Yuan , M Z Rong . . J Mater Chem , 2009 . 19 ( 9 ): 1289 - 1296 . DOI:10.1039/b811938dhttp://doi.org/10.1039/b811938d.
Q T Li , M J Jiang , G Wu . . ACS Appl Mater Interfaces , 2017 . DOI:10.1021/acsami.7b01954http://doi.org/10.1021/acsami.7b01954 .
Y K Guo , H Li , P X Zhao . . Chinese J Polym Sci , 2017 . 35 ( 6 ): 728 - 738 . DOI:10.1007/s10118-017-1920-yhttp://doi.org/10.1007/s10118-017-1920-y.
S D Iacono , A Martone , A Pastore . . Polym Eng Sci , 2017 . DOI:10.1002/pen.24570http://doi.org/10.1002/pen.24570 .
H Tang , G X Chen , Q Li . . Mater Lett , 2016 . 184 143 - 147 . DOI:10.1016/j.matlet.2016.08.036http://doi.org/10.1016/j.matlet.2016.08.036.
Structure and Healing Behavior of Self-healing Polyurethane Based on Diels-Alder Reaction
SELF-HEALING POLYMERIC MATERIALS TOWARDS STRENGTH RECOVERY FOR STRUCTURAL APPLICATIONS
Intrinsic Self-healing Polysiloxane Materials: From Single Dynamic Crosslinked Network to Multiple Dynamic Crosslinked Networks
Self-healing Solid-state Polymer Electrolyte Based on Zwitterions
Bio-based Epoxy Resin: Controllable Degradation, Chemical Recovery and Antimicrobial Property
Related Author
No data
Related Institution
School of Bailie Engineering & Technology, Lanzhou City University
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering,Sun Yat-Sen University
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer Based Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University
Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology
School of Materials Science and Engineering, Tianjin University